
Chapter 9 Advanced Query Formulation with SQL 389

In Microsoft Access, you can use multiple SELECT statements instead of nested que-
ries in the FROM clause. Using multiple statements can provide simpler formulation
in some cases than using nested queries in the FROM clause. For example, instead of
using DISTINCT inside COUNT as in Example 9.29, you can use a stored query with
the DISTINCT keyword following the SELECT keyword. In Example 9A.1, the first
stored query (Temp9A-1) finds the unique combinations of faculty name and course
number. Note the use of the DISTINCT keyword to eliminate duplicates. The second
stored query (Temp9A-2) finds the unique course numbers in the Offering table. The
final query combines the two stored queries. Note that you can use stored queries sim-
ilar to the way tables are used. Simply use the stored query name in the FROM clause.

APPENDIX 9.A: USAGE OF MULTIPLE STATEMENTS IN
MICROSOFT ACCESS

Example 9A.1

Using Stored Queries Instead of Nested
Queries in the FROM Clause
List the name of faculty who teach in at least one section of all fall 2016 information systems courses. The result is identical to

that in Example 9.29.

Temp9A-1:
SELECT DISTINCT Faculty.FacNo, FacFirstName,
 FacLastName, CourseNo
 FROM Faculty, Offering
 WHERE Faculty.FacNo = Offering.FacNo
 AND OffTerm = 'FALL' AND OffYear = 2016
 AND CourseNo LIKE 'IS*'

Temp9A-2:
SELECT DISTINCT CourseNo
 FROM Offering
 WHERE OffTerm = 'FALL' AND OffYear = 2016
 AND CourseNo LIKE 'IS*'

SELECT FacNo, FacFirstName, FacLastName
 from [Temp9A-1]
 GROUP by FacNo, FacFirstName, FacLastName
 HAVING COUNT(*) = (SELECT COUNT(*) FROM [Temp9A-2])

26008_ch09_p333-394.indd 389 07/02/18 4:01 PM

390 Part 5 Application Development with Relational Databases

This appendix summarizes the SQL:2016 syntax for nested SELECT statements (sub-
queries) and outer join operations presented in Chapter 9. For the syntax of other
variations of the nested SELECT and outer join operations not presented in Chapter 9,
consult an SQL reference book. Nested SELECT statements can be used in the FROM
clause and the WHERE clause of the SELECT, UPDATE, and DELETE statements.
The conventions used in the syntax notation are identical to those used at the end of
Chapter 3.

Expanded Syntax for Nested Queries in the FROM Clause
<Table-Specification>:
 { <Simple-Table> | -- defined in Chapter 4
 <Join-Operation> | -- defined in Chapter 4
 <Simple-Select> [[AS] AliasName] }
 -- <Simple-Select> is defined in Chapter 4

Expanded Syntax for Row Conditions
<Row-Condition>:
{ <Simple-Condition> | -- defined in Chapter 4
 <Compound-Condition> | -- defined in Chapter 4
 <Exists-Condition> |
 <Element-Condition> }

<Exists-Condition>: [NOT] EXISTS <Simple-Select>

<Simple-Select>: -- defined in Chapter 4

<Element-Condition>:
 <Scalar-Expression> <Element-Operator>(<Simple-Select>)

<Element-Operator>:
 { = | < | > | >= | <= | <> | [NOT] IN }

<Scalar-Expression>: -- defined in Chapter 4

Expanded Syntax for Group Conditions
<Simple-Group-Condition>: -- Last choice is new
{ <Column-Expression> ComparisonOperator
 <Column-Experssion> |
 <Column-Expression> [NOT] IN (Constant*) |
 <Column-Expression> BETWEEN <Column-Expression>
 AND <Column-Expression> |
 <Column-Expression> IS [NOT] NULL |
 ColumnName [NOT] LIKE StringPattern |
 <Exists-Condition> |
 <Column-Expression> <Element-Operator> <Simple-Select> }

<Column-Expression>: -- defined in Chapter 4

APPENDIX 9.B: SQL:2016 SYNTAX SUMMARY

26008_ch09_p333-394.indd 390 07/02/18 4:01 PM

Chapter 9 Advanced Query Formulation with SQL 391

Expanded Syntax for Outer Join Operations
<Join-Operation>:
 { <Simple-Table> <Join-Operator> <Simple-Table>
 ON <Join-Condition> |
 { <Simple-Table> | <Join-Operation> } <Join-Operator>
 { <Simple-Table> | <Join-Operation> }
 ON <Join-Condition> |
 (<Join-Operation>) }

<Join-Operator>:
{ [INNER] JOIN |
 LEFT [OUTER] JOIN |
 RIGHT [OUTER] JOIN |
 FULL [OUTER] JOIN }

Expanded Syntax for Recursive Common Table Expressions
WITH CTEName (ColumnName*)
AS
-- Anchor member (AM) referencing the hierarchical table.
 (<Simple-Select> – Using expanded <Table-Specification> above
UNION ALL
-- Recursive member (RM) referencing CTEName.
 <Simple-Select>) – Using expanded <Table-Specification> above
-- Statement using CTEName
<Select-Statement>; – Using expanded <Table-Specification> above

26008_ch09_p333-394.indd 391 07/02/18 4:01 PM

392 Part 5 Application Development with Relational Databases

Until the Oracle 9i release, Oracle used a proprietary extension for one-sided outer
joins. To express a one-sided outer join in Oracle 8i SQL, you need to use the notation
(+) as part of a join condition in the WHERE clause. You place the (+) notation just
after the join column of the null table, that is, the table with null values in the result. In
contrast, the SQL:2016 LEFT and RIGHT keywords are placed after the table in which
nonmatching rows are preserved in the result. The Oracle 8i formulations of Examples
9.1, 9.2, 9.4, 9.5, and 9.6 demonstrate the (+) notation.

APPENDIX 9.C: ORACLE 8I NOTATION FOR OUTER JOINS

Example 9.1 (Oracle 8i)

One-Sided Outer Join with
Outer Join Symbol on the Right
Side of a Join Condition

The (+) notation is placed after the Faculty.FacNo column in the join condition because Faculty is the null table in the result.

SELECT OfferNo, CourseNo, Offering.FacNo, Faculty.FacNo,
 FacFirstName, FacLastName
 FROM Faculty, Offering
 WHERE Offering.FacNo = Faculty.FacNo (+)
 AND CourseNo LIKE 'IS%'

Example 9.2 (Oracle 8i)

One-Sided Outer Join with Outer Join
Symbol on the Left Side of a Join Condition
The (+) notation is placed after the Faculty.FacNo column in the join condition because Faculty is the null table in the result.

SELECT OfferNo, CourseNo, Offering.FacNo, Faculty.FacNo,
 FacFirstName, FacLastName
 FROM Faculty, Offering
 WHERE Faculty.FacNo (+) = Offering.FacNo
 AND CourseNo LIKE 'IS%'

Example 9.4 (Oracle 8i)

Full Outer Join Using a Union of
Two One-Sided Outer Joins
Combine the Faculty and Student tables using a full outer join. List the Social Security number, the name (first and last), the salary

(faculty only), and the GPA (students only) in the result.

SELECT FacNo, FacFirstName, FacLastName, FacSalary,
 StdNo, StdFirstName, StdLastName, StdGPA
 FROM Faculty, Student
 WHERE Student.StdNo = Faculty.FacNo (+)
 UNION
SELECT FacNo, FacFirstName, FacLastName, FacSalary,
 StdNo, StdFirstName, StdLastName, StdGPA
 FROM Faculty, Student
 WHERE Student.StdNo (+) = Faculty.FacNo

26008_ch09_p333-394.indd 392 07/02/18 4:01 PM

Chapter 9 Advanced Query Formulation with SQL 393

It should be noted that the proprietary extension of Oracle is inferior to the
SQL:2016 notation. The proprietary extension does not allow specification of the order
of performing outer joins. This limitation can be problematic on difficult problems
involving more than one outer join. Thus, you should use the SQL:2016 outer join
syntax although later Oracle versions (9i and beyond) still support the proprietary
extension using the (+) symbol.

Example 9.5 (Oracle 8i)

Mixing a One-Sided Outer
Join and an Inner Join
Combine columns from the Faculty, Offering, and Course tables for IS courses offered in 2017. Include a row in the result even

if there is not an assigned instructor.

SELECT OfferNo, Offering.CourseNo, OffTerm, CrsDesc,
 Faculty.FacNo, FacFirstName, FacLastName
 FROM Faculty, Offering, Course
 WHERE Offering.FacNo = Faculty.FacNo (+)
 AND Course.CourseNo = Offering.CourseNo
 AND Course.CourseNo LIKE 'IS%' AND OffYear = 2017

Example 9.6 (Oracle 8i)

Mixing a One-Sided Outer
Join and Two Inner Joins
List the rows of the Offering table where there is at least one student enrolled, in addition to the requirements of Example 9.6.

Remove duplicate rows when there is more than one student enrolled in an offering.

SELECT DISTINCT Offering.OfferNo, Offering.CourseNo,
 OffTerm, CrsDesc, Faculty.FacNo, FacFirstName,
 FacLastName
 FROM Faculty, Offering, Course, Enrollment
 WHERE Offering.FacNo = Faculty.FacNo (+)
 AND Course.CourseNo = Offering.CourseNo
 AND Offering.OfferNo = Enrollment.OfferNo
 AND Course.CourseNo LIKE 'IS%' AND OffYear = 2017

26008_ch09_p333-394.indd 393 07/02/18 4:01 PM

