
Appendix

This appendix contains CREATE TABLE statements for the university database tables
presented in the body of Chapter 3. The CREATE TABLE statements conform to the
SQL standard. In addition, the CREATE TABLE statements execute in both Oracle and
PostgreSQL.

CREATE TABLE Student
(StdNo 	 CHAR(11)	� CONSTRAINT

StdNoRequired NOT NULL,
 StdFirstName	� VARCHAR(50)	

CONSTRAINT StdFirstNameRequired NOT NULL,
 StdLastName	� VARCHAR(50)

CONSTRAINT StdLastNameRequired NOT NULL,
 StdCity	� VARCHAR(50)

CONSTRAINT StdCityRequired NOT NULL,
 StdState	� CHAR(2)

CONSTRAINT StdStateRequired NOT NULL,
 StdZip	� CHAR(10)

�CONSTRAINT StdZipRequired NOT NULL,
 StdMajor	 CHAR(6),
 StdClass	 CHAR(6),
 StdGPA	 DECIMAL(3,2) DEFAULT 0,	
 CONSTRAINT PKStudent PRIMARY KEY (StdNo),
 CONSTRAINT ValidGPA CHECK (StdGPA BETWEEN 0 AND 4),
 CONSTRAINT ValidStdClass CHECK
 (StdClass IN ('FR', 'SO', 'JR', 'SR')),
 �CONSTRAINT MajorDeclared CHECK (StdClass IN ('FR','SO')

 OR StdMajor IS NOT NULL));

CREATE TABLE Course
(CourseNo 	 CHAR(6),
 CrsDesc	� VARCHAR(250)

CONSTRAINT CrsDescRequired NOT NULL,
 CrsUnits	 INTEGER,
CONSTRAINT PKCourse PRIMARY KEY (CourseNo),
CONSTRAINT UniqueCrsDesc UNIQUE (CrsDesc));

CREATE TABLE Faculty
(FacNo 	 CHAR(11),
 FacFirstName	� VARCHAR(30)

CONSTRAINT FacFirstNameRequired NOT NULL,
 FacLastName	� VARCHAR(30)

CONSTRAINT FacLastNameRequired NOT NULL,
 FacCity	� VARCHAR(30)

�CONSTRAINT FacCityRequired NOT NULL,
 FacState	� CHAR(2)

�CONSTRAINT FacStateRequired NOT NULL,
 FacZipCode	� CHAR(10)

�CONSTRAINT FacZipRequired NOT NULL,
 FacHireDate	 DATE,
 FacDept	 CHAR(6),	
 FacRank	 CHAR(4),
 FacSalary	 DECIMAL(10,2),

APPENDIX 3.A:  CREATE TABLE STATEMENTS FOR THE UNIVERSITY
DATABASE TABLES

Mannino_8e_Book.indb 1 4/21/2022 6:16:47 PM

Appendix

 FacSupervisor	 CHAR(11),
CONSTRAINT PKFaculty PRIMARY KEY (FacNo),
CONSTRAINT �FKFacSupervisor FOREIGN KEY (FacSupervisor)

REFERENCES Faculty);

CREATE TABLE Offering
(OfferNo 	 INTEGER,
 CourseNo	 CHAR(6)	� CONSTRAINT OffCourseNoRequired

NOT NULL,
 OffLocation	 VARCHAR(30),
 OffDays	 CHAR(6)	 DEFAULT 'MW',
 OffTerm	� CHAR(6)

�CONSTRAINT OffTermRequired NOT NULL,
 OffYear	� INTEGER	 DEFAULT 2022

CONSTRAINT OffYearRequired NOT NULL,
 FacNo	 CHAR(11),
 OffTime	 DATE,
CONSTRAINT PKOffering PRIMARY KEY (OfferNo),
CONSTRAINT FKCourseNo FOREIGN KEY (CourseNo)
 REFERENCES Course,
CONSTRAINT FKFacNo FOREIGN KEY (FacNo) REFERENCES Faculty);

CREATE TABLE Enrollment
(OfferNo 	 INTEGER,
 StdNo	 CHAR(11),
 EnrGrade	 DECIMAL(3,2) DEFAULT 0,
CONSTRAINT PKEnrollment PRIMARY KEY (OfferNo, StdNo),
CONSTRAINT FKOfferNo FOREIGN KEY (OfferNo)
 REFERENCES Offering ON DELETE CASCADE,
CONSTRAINT FKStdNo FOREIGN KEY (StdNo) REFERENCES Student
 ON DELETE CASCADE);

Mannino_8e_Book.indb 2 4/21/2022 6:16:47 PM

Appendix

This appendix provides a convenient summary of the SQL syntax for the CREATE
TABLE statement along with several related statements. The SQL syntax provides
rules that define valid SQL statements. For brevity, only the syntax of the most com-
mon parts of the statements is described. SQL:2019 is the current version of the SQL
standard although the syntax rules in SQL:2019 for the statements described in this
appendix are identical to previous SQL standards (SQL:2016, SQL:2011, SQL:2008,
SQL:2003, SQL:1999 and SQL-92). For the complete syntax, refer to a SQL:2019 or a
SQL-92 reference book such as Groff and Weinberg (2002). The conventions used in
the syntax notation are listed before the syntax rules.

•	 Uppercase words denote reserved words.
•	 Mixed-case words without hyphens denote names that the user substitutes.
•	 The asterisk * after a syntax element indicates that a comma-separated list can be

used.
•	 The plus symbol + after a syntax element indicates that a list can be used. No

commas appear in the list.
•	 Names enclosed in angle brackets <> denote definitions defined later in the

syntax. The definitions occur on a new line with the element and colon followed
by the syntax.

•	 Square brackets [] enclose optional elements.
•	 Curly brackets {} enclose choice elements. One element must be chosen among

the elements separated by the vertical bars |.
•	 The parentheses () denote themselves.
•	 Double hyphens — denote comments that are not part of the syntax.

CREATE TABLE1 Syntax

CREATE TABLE TableName
 (<Column-Definition>* [, <Table-Constraint>*])

<Column-Definition>: ColumnName DataType
[DEFAULT { DefaultValue | USER | NULL }]
[<Column-Constraint>+]

<Column-Constraint>:
 { [CONSTRAINT ConstraintName] NOT NULL |
 [CONSTRAINT ConstraintName] UNIQUE |
 [CONSTRAINT ConstraintName] PRIMARY KEY |
 [CONSTRAINT ConstraintName] <Check-Constraint> |
 [CONSTRAINT ConstraintName] FOREIGN KEY
 REFERENCES TableName [(ColumnName)]
 [ON DELETE <Action-Specification>]
 [ON UPDATE <Action-Specification>] }

<Table-Constraint>: [CONSTRAINT ConstraintName]
 { <Primary-Key-Constraint> |
 <Foreign-Key-Constraint> |
 <Uniqueness-Constraint> |
 <Check-Constraint> }

<Primary-Key-Constraint>: PRIMARY KEY (ColumnName*)

1 Chapter 4 defines <Row-Condition> due to its complex structure and usage in the SQL SELECT statement.

APPENDIX 3.B:  SQL SYNTAX SUMMARY

Mannino_8e_Book.indb 3 4/21/2022 6:16:47 PM

Appendix

<Foreign-Key-Constraint>: FOREIGN KEY (ColumnName*)
 REFERENCES TableName [(ColumnName*)]
 [ON DELETE <Action-Specification>]
 [ON UPDATE <Action-Specification>]

<Action-Specification>: { CASCADE | SET NULL |
 SET DEFAULT | RESTRICT }

<Uniqueness-Constraint>: UNIQUE (ColumnName*)

<Check-Constraint>: CHECK (<Row-Condition>)

<Row-Condition>: -- defined in Chapter 4

Other related statements

The ALTER TABLE and DROP TABLE statements support modification of a table defi-
nition and deleting a table definition. The ALTER TABLE statement is particularly use-
ful because table definitions often change over time. In both statements, the keyword
RESTRICT means that the statement cannot be performed if related tables exist. The
keyword CASCADE means that the same action will be performed on related tables.

ALTER TABLE TableName
 { ADD { <Column-Definition> | <Table-Constraint> } |
 ALTER ColumnName { SET DEFAULT DefaultValue |
 DROP DEFAULT } |
 DROP ColumnName { CASCADE | RESTRICT } |
 DROP CONSTRAINT ConstraintName {CASCADE | RESTRICT }
}

DROP TABLE TableName { CASCADE | RESTRICT }

Notes on Oracle Syntax

The CREATE TABLE statement in Oracle 21c SQL conforms closely to the SQL:2019
standard. Here is a list of the most significant syntax differences:

•	 Oracle SQL does not support the ON UPDATE clause for referential integrity
constraints.

•	 Oracle SQL only supports CASCADE and SET NULL as the action specifications
of the ON DELETE clause. If an ON DELETE clause is not specified, the deletion
is not allowed (restricted) if related rows exist.

•	 Oracle does not support the BOOLEAN data type. A typical substitution is to use
CHAR(1) with text values such as T/F or Y/N.

•	 Oracle SQL does not support dropping columns in the ALTER statement.
•	 Oracle SQL supports the MODIFY keyword in place of the ALTER keyword in

the ALTER TABLE statement (use MODIFY ColumnName instead of ALTER
ColumnName).

•	 Oracle SQL supports data type changes using the MODIFY keyword in the
ALTER TABLE statement.

Mannino_8e_Book.indb 4 4/21/2022 6:16:47 PM

Appendix

The SQL standard provides the GENERATED clause to support the generation of
unique values for selected columns, typically primary keys. The GENERATED clause
is used in place of a default value as shown in the following syntax specification. Typi-
cally, a whole number data type such as INTEGER should be used for columns with
a GENERATED clause. The START BY and INCREMENT BY keywords can be used
to indicate the initial value and the increment value. The ALWAYS keyword indicates
that the value is always automatically generated. The BY DEFAULT clause allows a
user to specify a value, overriding the automatic value generation.

<Column-Definition>: ColumnName DataType
[<Default-Specification>]
[<Column-Constraint>+]

<Default-Specification>:
 { DEFAULT { DefaultValue | USER | NULL } |
 GENERATED {ALWAYS | BY DEFAULT } AS IDENTITY
 START WITH NumericConstant
 [INCREMENT BY NumericConstant] }

The following example demonstrates the SQL standard approach for automatic value
generation. Note that the primary key constraint is not required for columns with
generated values although generated values are mostly used for primary keys. The
example executes in both Oracle and PostgreSQL.

SQL GENERATED Clause Example

-- Executes in Oracle and PostgreSQL
-- User must have CREATE SEQUENCE privilege in Oracle.
-- Oracle creates a sequence to support identity columns.
CREATE TABLE XStudent
(StdNo INTEGER GENERATED ALWAYS AS IDENTITY
 (START WITH 1 INCREMENT BY 1),
CONSTRAINT PKXStudent PRIMARY KEY (StdNo));

The second example uses a sequence object, an older approach for generation of
unique values. The second example contains two statements: one for the sequence
creation and another for the table creation. Because sequences are not associated with
columns, Oracle and PostgreSQL use nextval and currval to generate and reference
sequence values when inserting a row into a table. In PostgreSQL, nextval and currval
are functions. In Oracle, nextval and currval are pseudo columns2. In contrast, the usage
of extra functions is not necessary in the GENERATED clause of the SQL standard.

Sequence Example

-- Executes in Oracle and PostgreSQL
-- Alternative to GENERATED clause
CREATE SEQUENCE StdNoSeq START WITH 1 INCREMENT BY 1;

CREATE TABLE XStudent2
(StdNo INTEGER,
CONSTRAINT PKXStudent2 PRIMARY KEY (StdNo));

2 In Oracle, a pseudo column behaves a column of a table but is not stored in the table.

APPENDIX 3.C:  GENERATION OF UNIQUE VALUES FOR
PRIMARY KEYS

Mannino_8e_Book.indb 5 4/21/2022 6:16:47 PM

Appendix

This appendix summarizes SQL syntax for the SELECT, INSERT, UPDATE, and
DELETE statements presented in this chapter. The syntax is limited to the simplified
statement structure presented in this chapter. Chapters in Part 5 extend the syntax
with additional elements. The conventions used in the syntax notation are identical to
those used at the end of Chapter 3.

Simplified SELECT Syntax

<Select-Statement>: { <Simple-Select> | <Set-Select> }
 [ORDER BY <Sort-Specification>*]

<Simple-Select>:
 SELECT [DISTINCT] <Column-Specification>*
 FROM <Table-Specification>*
 [WHERE <Row-Condition>]
 [GROUP BY ColumnName*]
 [HAVING <Group-Condition>]

<Column-Specification>: { <Column-List> | <Column-Item> }

<Column-List>: { * | TableName.* }
 -- * is a literal here not a syntax symbol

<Column-Item>: <Column-Expression> [[AS] AliasName]

<Column-Expression>:
 { <Scalar-Expression> | <Aggregate-Expression> }

<Scalar-Expression>:
 { <Scalar-Item> |
 <Scalar-Item> <Arith-Operator> <Scalar-Item> }

<Scalar-Item>:
 { [TableName.]ColumnName |
 Constant |
 FunctionName [(Argument*)] |
 <Scalar-Expression> |
 (<Scalar-Expression>) }

<Arith-Operator>: { + | - | * | / }
 -- * and + are literals here not syntax symbols

<Aggregate-Expression>:
 { SUM ({<Scalar-Expression> | DISTINCT ColumnName }) |
	 AVG ({<Scalar-Expression> | DISTINCT ColumnName }) |
	 MIN (<Scalar-Expression>) |
	 MAX (<Scalar-Expression>) |
	 COUNT ([DISTINCT] ColumnName) |
	 COUNT (*) } -- * is a literal symbol here, not a syntax symbol

<Table-Specification>: { <Simple-Table> |
 <Join-Operation> }

APPENDIX 4.A:  SQL SYNTAX SUMMARY

Mannino_8e_Book.indb 6 4/21/2022 6:16:47 PM

Appendix

<Simple-Table>: TableName [[AS] AliasName]

<Join-Operation>:
 { <Simple-Table> [INNER] JOIN <Simple-Table>
 ON <Join-Condition> |
 { <Simple-Table> | <Join-Operation> } [INNER] JOIN
 { <Simple-Table> | <Join-Operation> }
 ON <Join-Condition> |
 (<Join-Operation>) }

<Join-Condition>: { <Simple-Join-Condition> |
 <Compound-Join-Condition> }

<Simple-Join-Condition>:
 <Scalar-Expression> <Comparison-Operator>
 <Scalar-Expression>

<Compound-Join-Condition>:
 { NOT <Join-Condition> |
 <Join-Condition> AND <Join-Condition> |
 <Join-Condition> OR <Join-Condition> |
 (<Join-Condition>)

	

<Comparison-Operator>: { = | < | > | <= | >= | <> }

<Row-Condition>:
 { <Simple-Condition> | <Compound-Condition> }

<Simple-Condition>:
{ <Scalar-Expression> <Comparison-Operator>
 <Scalar-Experssion> |
 <Scalar-Expression> [NOT] IN (Constant*) |
 <Scalar-Expression> BETWEEN <Scalar-Expression> AND
 <Scalar-Expression> |
 <Scalar-Expression> IS [NOT] NULL |
 ColumnName [NOT] LIKE StringPattern }

<Compound-Condition>:
	 { NOT <Row-Condition> |
	 <Row-Condition> AND <Row-Condition> |
	 <Row-Condition> OR <Row-Condition> |
	 (<Row-Condition>) }

<Group-Condition>:
 { <Simple-Group-Condition> | <Compound-Group-Condition> }

Mannino_8e_Book.indb 7 4/21/2022 6:16:47 PM

Appendix

<Simple-Group-Condition>:-- permits both scalar and aggregate expressions
{ <Column-Expression> ComparisonOperator
 < Column-Experssion> |
 <Column-Expression> [NOT] IN (Constant*) |
 <Column-Expression> BETWEEN <Column-Expression> AND
 <Column-Expression> |
 <Column-Expression> IS [NOT] NULL |
 ColumnName [NOT] LIKE StringPattern }

<Compound-Group-Condition>:
	 { NOT <Group-Condition> |
	 <Group-Condition> AND <Group-Condition> |
	 <Group-Condition> OR <Group-Condition> |
	 (<Group-Condition>) }

<Sort-Specification>:
 { ColumnName | ColumnNumber } [{ ASC | DESC }]

<Set-Select>:
 { <Simple-Select> | <Set-Select> } <Set-Operator>
 { <Simple-Select> | <Set-Select> }

<Set-Operator>: { UNION | INTERSECT | EXCEPT } [ALL]

INSERT Syntax

INSERT INTO TableName (ColumnName*)
 VALUES (Constant*)

INSERT INTO TableName [(ColumnName*)]
 <Simple-Select>

UPDATE Syntax

UPDATE TableName
 SET <Column-Assignment>*
 [WHERE <Row-Condition>]

<Column-Assignment>: ColumnName = <Scalar-Expression>

DELETE Syntax

DELETE FROM TableName
 [WHERE <Row-Condition>]

Mannino_8e_Book.indb 8 4/21/2022 6:16:47 PM

Appendix

Table 4B-1 summarizes syntax differences among PostgreSQL, Oracle, Microsoft SQL
Server, and IBM DB2. The differences involve the parts of the SELECT statement pre-
sented in the chapter.

APPENDIX 4.B:  SYNTAX DIFFERENCES AMONG MAJOR DBMS
PRODUCTS

TABLE 4B-1
SELECT Syntax Differences
among Major DBMS Products

Product

Element Oracle PostgreSQL MS SQL Server DB2

Pattern-matching
characters

%, _ %, _ %, _ %, _

Case sensitivity in
text matching

Yes Yes Depends on
COLLATE clause3

Yes

Date constants Surround in single
quotation marks

Surround in single
quotation marks

Surround in single
quotation marks

Surround in
single quotation
marks

Inequality symbol <> <> <> <>

Join operator style No in 8i, Yes in 9i
and later versions

Yes Yes Yes

Difference opera-
tions

MINUS keyword EXCEPT keyword EXCEPT keyword EXCEPT key-
word

3 Case insensitive by default but default can be changed for a database or column using the COLLATE
clause.

Mannino_8e_Book.indb 9 4/21/2022 6:16:47 PM

Appendix

Second (2NF) and third (3NF) normal forms were proposed before BCNF. Concep-
tually, BCNF makes 2NF and 3NF obsolete although many books still reference the
earlier forms. BCNF provides a simpler definition and covers two special cases not
covered by 3NF. The special cases are rare, but the simplified definition makes BCNF
superior to the combination of 2NF/3NF. This appendix covers 2NF and 3NF as refer-
ence material in case you see these normal forms mentioned in books and websites.

The definitions of 2NF and 3NF distinguish between key and nonkey columns4.
A column is a key column if it is part of a candidate key or a candidate key by itself.
Recall that a candidate key is a minimal set of column(s) that has unique values in a
table. Minimality means that none of the columns can be removed without losing the
uniqueness property. Essentially, candidate keys do not have extra columns. Non-
key columns are any other columns. In the big university database table shown in
Table 7A-1, the combination of (StdNo, OfferNo) is the only candidate key. Other col-
umns such as StdCity and StdClass are nonkey columns.

2NF and 3NF involve the relationship between key and nonkey columns and the
relationship between nonkey columns. The basic goal of 2NF and 3NF is to produce
tables in which every key determines the nonkey columns and nonkey columns do not
determine other nonkey columns. An easy way to remember the definitions of both
2NF and 3NF is shown in the following definition.

Combined Definition of 2NF and 3NF: a table is in 3NF if each nonkey column
depends on all candidate keys, whole candidate keys, and nothing but candidate
keys.5

Second Normal Form

To understand this definition, let us break it down to the 2NF and 3NF parts. The 2NF
definition uses the first part of the definition as shown in the following definition.

2NF Definition: a table is in 2NF if each nonkey column depends on whole candidate
keys, not on a subset of any candidate key.

To see if a table is in 2NF, you should look for FDs that violate the definition. An
FD in which part of a key determines a nonkey column violates 2NF. If all candidate
keys contain only one column, the table is in 2NF. Looking at the FDs in Table 7A-2,
you can easily detect violations of 2NF. For example, StdCity is a nonkey column but
StdNo, not the entire primary key (combination of StdNo and OfferNo), determines

APPENDIX 7.A:  SECOND AND THIRD NORMAL FORMS

TABLE 7A-1
Sample Data for the Big
University Database Table

StdNo StdCity StdClass OfferNo OffTerm OffYear EnrGrade CourseNo CrsDesc

S1 SEATTLE JUN O1 FALL 2020 3.5 C1 DB

S1 SEATTLE JUN O2 FALL 2020 3.3 C2 VB

S2 BOTHELL JUN O3 SPRING 2021 3.1 C3 OO

S2 BOTHELL JUN O2 FALL 2020 3.4 C2 VB

5 You can remember this definition by its analogy to the traditional justice oath: “Do you swear to tell the
truth, the whole truth, and nothing but the truth, ...”.

4 In some academic literature, key columns are known as prime, and nonkey columns as nonprime.

Mannino_8e_Book.indb 10 4/21/2022 6:16:47 PM

Appendix

it. The only FDs that satisfy the 2NF definition are StdNo, OfferNo → EnrGrade and
CourseNo → CrsDesc.

2NF Violation: an FD in which part of key determines a nonkey violates 2NF. A table
with only single column candidate keys cannot violate 2NF.

To place the table into 2NF, you split the original table into smaller tables that
satisfy the 2NF definition. In each smaller table, the entire primary key (not part of the
primary key) should determine the nonkey columns. The splitting process involves
the project operator of relational algebra. For the university database table, three pro-
jection operations split it so that the underlined primary key determines the nonkey
columns in each table below.

UnivTable1 (StdNo, StdCity, StdClass)
UnivTable2 (OfferNo, OffTerm, OffYear, CourseNo, CrsDesc)
UnivTable3 (StdNo, OfferNo, EnrGrade)

The splitting process should preserve the original table in two ways. First, the origi-
nal table should be recoverable using natural join operations on the smaller tables.
Second, the FDs in the original table should be derivable from the FDs in the smaller
tables. Technically, the splitting process is known as a nonloss, dependency-preserv-
ing decomposition. Some of the references at the end of this chapter explain the theory
underlying the splitting process.

After splitting the original table into smaller tables, you should add referential
integrity constraints to connect the tables. Whenever a table is split, the splitting col-
umn becomes a foreign key in the table in which it is not a primary key. For example,
StdNo is a foreign key in UnivTable3 because the original university table was split on
this column. Therefore, you should define a referential integrity constraint stating that
UnivTable3.StdNo refers to UnivTable1.StdNo. The UnivTable3 table is repeated below
with its referential integrity constraints.

UnivTable3 (StdNo, OfferNo, EnrGrade)
	 FOREIGN KEY (StdNo) REFERENCES UnivTable1
	 FOREIGN KEY (OfferNo) REFERENCES UnivTable2

Third Normal Form

UnivTable2 still has modification anomalies. For example, you cannot add a new course
unless the OfferNo column value is known. To eliminate the modification anomalies,
the definition of 3NF should be applied.

An FD in which a nonkey column determines another nonkey column violates
3NF. In UnivTable2 above, the FD (CourseNo → CrsDesc) violates 3NF because both col-
umns, CourseNo and CrsDesc are nonkey. To fix the violation, split UnivTable2 into two
tables, as shown below, and add a foreign key constraint.

UnivTable2-1 (OfferNo, OffTerm, OffYear, CourseNo)
	 FOREIGN KEY (CourseNo) REFERENCES UnivTable2-2
UnivTable2-2 (CourseNo, CrsDesc)

An equivalent way to define 3NF is that 3NF prohibits transitive dependencies. A
transitive dependency is a functional dependency derived by the law of transitivity.

3NF Definition
a table is in 3NF if it is in 2NF
and each nonkey column
depends only on candidate
keys, not on other nonkey
columns.

TABLE 7A-2
List of FDs for the Big
University Database Table

StdNo → StdCity, StdClass

OfferNo → OffTerm, OffYear, CourseNo, CrsDesc

CourseNo → CrsDesc

StdNo, OfferNo → EnrGrade

Mannino_8e_Book.indb 11 4/21/2022 6:16:47 PM

Appendix

The law of transitivity says that if an object A is related to B and B is related to C, then
you can conclude that A is related to C. For example, the < operator obeys the transi-
tive law for real numbers: A < B and B < C implies that A < C. Functional dependen-
cies, like the < operator, obey the law of transitivity: A → B, B → C, then A → C. In Figure
7.2, OfferNo → CrsDesc is a transitive dependency derived from OfferNo → CourseNo and
CourseNo → CrsDesc.

Because transitive dependencies are easy to overlook, the preferred definition of
3NF does not use transitive dependencies. In addition, you learned in Section 7.2.3
to omit derived dependencies such as transitive dependencies in the list of FDs for a
table.

Combined Example of 2NF and 3NF

The big patient table as depicted in Table 7A-3 provides another example for applying
your knowledge of 2NF and 3NF. The big patient table contains facts about patients,
health care providers, patient visits to a clinic, and diagnoses made by health care pro-
viders. The big patient table contains a combined primary key consisting of the combi-
nation of VisitNo and ProvNo (provider number). Like the big university database table
depicted in Table 7A-1, the big patient table reflects a poor table design with many
redundancies. Table 7A-4 lists the associated FDs. You should verify that the sample
rows in Table 7A-3 do not falsify the FDs.

As previously discussed, FDs that violate 2NF involve part of a key determining
a nonkey. Many of the FDs in Table 7A-4 violate the 2NF definition because the com-
bination of VisitNo and ProvNo is the primary key. Thus, the FDs with only VisitNo or
ProvNo in the LHS violate 2NF. To alleviate the 2NF violations, split the big patient
table so that the violating FDs are associated with separate tables. In the revised list of
tables, PatientTable1 and PatientTable2 contain the violating FDs. PatientTable3 retains
the remaining columns.

PatientTable1 (ProvNo, ProvSpecialty)
PatientTable2 (VisitNo, VisitDate, PatNo, PatAge, PatCity, PatZip)
PatientTable3 (VisitNo, ProvNo, Diagnosis)
	 FOREIGN KEY (VisitNo) REFERENCES PatientTable2
	 FOREIGN KEY (ProvNo) REFERENCES PatientTable1

PatientTable1 and PatientTable3 are in 3NF because there are no nonkey columns that
determine other nonkey columns. However, PatientTable2 violates 3NF because the

Transitive Dependency
an FD derived by the law of
transitivity. Transitive FDs
should not be recorded as
input to the normalization
process.

TABLE 7A-3
Sample Data for the Big
Patient Table

VisitNo VisitDate PatNo PatAge PatCity PatZip ProvNo ProvSpecialty Diagnosis

V10020 1/13/2021 P1 35 DENVER 80217 D1 INTERNIST EAR INFECTION

V10020 1/13/2021 P1 35 DENVER 80217 D2 NURSE
PRACTITIONER

INFLUENZA

V93030 1/20/2021 P3 17 ENGLEWOOD 80113 D2 NURSE
PRACTITIONER

PREGNANCY

V82110 1/18/2021 P2 60 BOULDER 85932 D3 CARDIOLOGIST MURMUR

PatNo → PatAge, PatCity, PatZip

PatZip → PatCity

ProvNo → ProvSpecialty

VisitNo → PatNo, VisitDate, PatAge, PatCity, PatZip

VisitNo, ProvNo → Diagnosis

TABLE 7A-4
List of FDs for the Big Patient
Table

Mannino_8e_Book.indb 12 4/21/2022 6:16:47 PM

Appendix

FDs PatNo → PatZip, PatAge and PatZip → PatCity involve nonkey columns that deter-
mine other nonkey columns. To alleviate the 3NF violations, split PatientTable2 into
three tables as shown in the revised table list. In the revised list of tables, Patient-
Table2-1 and PatientTable2-2 contain the violating FDs, while PatientTable2-3 retains
the remaining columns.

PatientTable2-1 (PatNo, PatAge, PatZip)
	 FOREIGN KEY (PatZip) REFERENCES PatientTable2-2
PatientTable2-2 (PatZip, PatCity)
PatientTable2-3 (VisitNo, PatNo, VisitDate)
	 FOREIGN KEY (PatNo) REFERENCES PatientTable2-1

Using 2NF and 3NF requires two normalization steps. The normalization process can
be performed in one step using BCNF and the simple synthesis procedure, as pre-
sented in section 7.2.

Mannino_8e_Book.indb 13 4/21/2022 6:16:47 PM

Appendix

This appendix summarizes the SQL syntax for nested SELECT statements and outer
join operations presented in Chapter 9. For the syntax of other variations of the nested
SELECT and outer join operations not presented in Chapter 9, consult an SQL reference
book. Nested SELECT statements can be used in the WHERE clause of the SELECT,
UPDATE, and DELETE statements as well as the FROM and HAVING clauses. The con-
ventions used in the syntax notation are identical to those used at the end of Chapter 3.

Expanded Syntax for Nested Queries in the FROM Clause

<Table-Specification>:
 { <Simple-Table> | -- defined in Chapter 4
 <Join-Operation> | -- defined in Chapter 4
 <Simple-Select> [AS] AliasName6 }
 -- <Simple-Select> is defined in Chapter 4

Expanded Syntax for Row Conditions

<Row-Condition>:
{ <Simple-Condition> | -- defined in Chapter 4
 <Compound-Condition> | -- defined in Chapter 4
 <Exists-Condition> |
 <Element-Condition> }

<Exists-Condition>: [NOT] EXISTS (<Simple-Select>)

<Simple-Select>: -- defined in Chapter 4

<Element-Condition>:
 <Scalar-Expression> <Element-Operator>
 (<Simple-Select>) |
 (ColumnName*) [NOT] IN (<Simple-Select>)

<Element-Operator>:
 { = | < | > | >= | <= | <> | [NOT] IN }

<Scalar-Expression>: -- defined in Chapter 4

Expanded Syntax for Group Conditions

<Simple-Group-Condition>: -- Last choice is new
{ <Column-Expression> ComparisonOperator
 <Column-Experssion> |
 <Column-Expression> [NOT] IN (Constant*) |
 <Column-Expression> BETWEEN <Column-Expression>
 AND <Column-Expression> |
 <Column-Expression> IS [NOT] NULL |
 ColumnName [NOT] LIKE StringPattern |
 <Exists-Condition> |

APPENDIX 9.A:  SQL SYNTAX SUMMARY

6 PostgreSQL requires an AliasName for nested SELECT statements in the FROM clause. Oracle only requires
an alias name for ambiguous references to columns of a nested query.

Mannino_8e_Book.indb 14 4/21/2022 6:16:47 PM

Appendix

 <Column-Expression> <Element-Operator>
 (<Simple-Select> }

<Column-Expression>: -- defined in Chapter 4

Expanded Syntax for Outer Join Operations

<Join-Operation>:
 { <Simple-Table> <Join-Operator> <Simple-Table>
 ON <Join-Condition> |
 { <Simple-Table> | <Join-Operation> } <Join-Operator>
 { <Simple-Table> | <Join-Operation> }
 ON <Join-Condition> |
 (<Join-Operation>) }

<Join-Operator>:
{ [INNER] JOIN |
 LEFT [OUTER] JOIN |
 RIGHT [OUTER] JOIN |
 FULL [OUTER] JOIN }

Mannino_8e_Book.indb 15 4/21/2022 6:16:47 PM

Appendix

This appendix summarizes the SQL standard syntax for the CREATE VIEW and DROP
VIEW statements and recursive common table expressions. The conventions used in
the syntax notation are identical to those used at the end of Chapter 3.

CREATE VIEW Statement

CREATE VIEW ViewName [(ColumnName*)]
 AS <Select-Statement>
 [WITH CHECK OPTION]

<Select-Statement>: -- defined in Chapter 4 and extended in Chapter 9

DROP VIEW Statement

DROP VIEW ViewName [{ CASCADE | RESTRICT }]
	 -- CASCADE deletes the view and any views that use its definition.

	 -- RESTRICT means that the view is not deleted if any views use its definition.

Expanded Syntax for Recursive Common Table Expressions

WITH CTEName (ColumnName*)
-- PostgreSQL uses WITH RECURSIVE keywords instead of WITH
AS
-- Anchor member (AM) referencing the hierarchical table.
 (<Simple-Select> – Using expanded <Table-Specification> in Chapter 9
UNION ALL
-- Recursive member (RM) referencing CTEName.
 <Simple-Select>) – Using expanded <Table-Specification> in Chapter 9
-- Statement using CTEName
<Select-Statement>; – Using expanded <Table-Specification> in Chapter 9

APPENDIX 10.A:  SQL SYNTAX SUMMARY

Mannino_8e_Book.indb 16 4/21/2022 6:16:47 PM

Appendix

This appendix summarizes the SQL standard syntax for the CREATE TRIGGER state-
ment. The conventions used in the syntax notation are identical to those used at the
end of Chapter 3.

CREATE Trigger Statement

CREATE TRIGGER TriggerName
 <TriggerTiming> <TriggerEvent> ON TableName
 [REFERENCING <AliasClause> [<AliasClause>]]
 [<GranularityClause> [WHEN (<Row-Condition>)]]
 <ActionBlock>

<TriggerTiming>: { BEFORE | AFTER }

<TriggerEvent>: { INSERT | DELETE |
 UPDATE [OF ColumnName*] }

<AliasClause>: { <RowAlias> | <TableAlias> }

<RowAlias>:
 { OLD [ROW] [AS] AliasName |
 NEW [ROW] [AS] AliasName }

<TableAlias>:
 { OLD TABLE [AS] AliasName |
 NEW TABLE [AS] AliasName }

<GranularityClause>: FOR EACH { ROW | STATEMENT }

<Row-Condition>: -- defined in Chapter 4

<ActionBlock>:
 -- can be a procedure call or an SQL block

APPENDIX 11.A:  SQL SYNTAX SUMMARY

Mannino_8e_Book.indb 17 4/21/2022 6:16:47 PM

Appendix

PostgreSQL triggers follow the SQL standard in most ways. Like triggers in the SQL
standard, PostgreSQL supports statement and row triggers, events for INSERT,
UPDATE, and DELETE actions, BEFORE, AFTER, and INSTEAD OF timing, and
WHEN conditions. INSTEAD OF triggers only apply to views like SQL standard
triggers.

PostgreSQL triggers extend SQL standard triggers in several way as indicated in
the following list. The trigger body change is a large difference from the SQL standard.

•	 PostgreSQL also supports trigger events for the TRUNCATE statement
providing unqualified removal of rows from multiple tables.

•	 PostgreSQL supports constraint triggers for transaction processing not specified
in the SQL standard. Constraint triggers involve transaction processing concepts
presented in Chapter 17, details beyond the presentation in this appendix.

•	 PostgreSQL fires BEFORE triggers before a delete action, even cascading deletes.
The SQL standard indicates that BEFORE DELETE triggers fire after completion
of cascaded deletes.

•	 PostgreSQL executes overlapping triggers in name order. The SQL standard
indicates creation time order.

•	 PostgreSQL supports data change and event triggers. The SQL standard does
not make this distinction. Data change triggers support typical processing of row
triggers. Event triggers are more limited for notification of events.

•	 PostgreSQL triggers only contain the EXECUTE FUNCTION statement in the
trigger body. The EXECUTE FUNCTION statement invokes a trigger function
usually coded with statements conforming to the PL/pgSQL language. In
contrast, SQL standard triggers use database programming language code inside
the trigger body.

The remainder of this appendix presents some example triggers to depict features of
PostgreSQL triggers and associated user-defined functions. All examples involve data
change triggers. The textbook website contains PostgreSQL triggers and associated
user-defined functions for all trigger examples in Chapter 11 as well as PostgreSQL
solutions for chapter problems involving triggers.

The first PostgreSQL trigger displays details about new and old values using the
NEW and OLD keywords. The trigger has just a single statement in the body follow-
ing the FOR EACH ROW keywords. The EXECUTE FUNCTION keywords precede
the name of the trigger function to execute. Usually, the trigger function has the same
name as the trigger. The trigger function (tr_Course_DIUA) returns a NULL result indi-
cating no data changes in the trigger. The RAISE statement with NOTICE level dis-
plays details in the Query Tool window without raising an error. The line following the
trigger function indicates that the body of the trigger function uses PL/pgSQL code.

APPENDIX 11.B:  POSTGRESQL TRIGGERS AND TRIGGER FUNCTIONS

Example 11.P1 – Trigger with a combined event that fires for every action on the course table along with testing code to fire the trigger.

Equivalent to example 11.25.

-- Create Trigger function
CREATE OR REPLACE FUNCTION tr_Course_DIUA()
	 RETURNS TRIGGER AS tr_Course_DIUA
BEGIN
	 raise notice 'Inserted Row';
	 raise notice 'CourseNo: %', NEW.CourseNo;
	 raise notice 'Course Description: %' ,NEW.CrsDesc;
	 raise notice 'Course Units: %', NEW.CrsUnits;
	 raise notice 'Deleted Row';
	 raise notice 'CourseNo: %', OLD.CourseNo;

Mannino_8e_Book.indb 18 4/21/2022 6:16:48 PM

Appendix

Example 11.P2 depicts a complex integrity constraint involving a table (Offering)
related to the trigger table (Enrollment). The DECLARE section in the trigger function
uses anchored data types like PL/SQL. The INTO clause of the SELECT statement
uses trigger function variables for the statement result. The RAISE statement in the
trigger function uses the EXCEPTION level, indicating a constraint violation aborting
the action firing the trigger. The last line in the trigger function uses RETURN NEW,
indicating no error detected.

	 raise notice 'Course Description: %' , OLD.CrsDesc;
	 raise notice 'Course Units: %', OLD.CrsUnits;
	 RETURN NULL;
END;
tr_Course_DIUA LANGUAGE plpgsql;
-- Create Trigger
CREATE TRIGGER tr_Course_DIUA
	 AFTER INSERT OR UPDATE OR DELETE
	 ON Course
	 FOR EACH ROW EXECUTE FUNCTION tr_Course_DIUA();
-- Testing Statements
INSERT INTO Course (CourseNo, CrsDesc, CrsUnits)
VALUES ('IS485','Advanced Database Management',4);
UPDATE Course
 SET CrsUnits = 3
 WHERE CourseNo = 'IS485';
DELETE FROM Course
 WHERE CourseNo = 'IS485';
DROP TRIGGER tr_Course_DIUA ON Course;
DROP FUNCTION tr_Course_DIUA;
ROLLBACK; -- Use reversing statements if auto commit is on

Example 11.P2 – Trigger to ensure that a seat remains in an offering. Equivalent to example 11.26.

-- Create Trigger function
CREATE OR REPLACE FUNCTION tr_Enrollment_IB()
	 RETURNS TRIGGER AS $tr_Enrollment_IB$
DECLARE
 anOffLimit Offering.OffLimit%TYPE;
 anOffNumEnrolled Offering.OffNumEnrolled%TYPE;

BEGIN
 SELECT OffLimit, OffNumEnrolled
 INTO anOffLimit, anOffNumEnrolled
 FROM Offering
 WHERE Offering.OfferNo = NEW.OfferNo;

 IF anOffNumEnrolled >= anOffLimit THEN
	 RAISE EXCEPTION 'No seats remaining in offering %. Number
 enrolled: %. Offering limit: %.',
 NEW.OfferNo,anOffNumEnrolled, anOffLimit; 		
	 END IF;
	 RETURN NEW;
END;
$tr_Enrollment_IB$ LANGUAGE plpgsql;
-- Create Trigger
-- This trigger ensures that the number of enrolled
-- students is less than the offering limit.
CREATE TRIGGER tr_Enrollment_IB
	 BEFORE INSERT
	 ON Enrollment
	 FOR EACH ROW EXECUTE FUNCTION tr_Enrollment_IB();

Mannino_8e_Book.indb 19 4/21/2022 6:16:48 PM

Appendix

-- Testing Statements
-- Insert the last student
-- Set auto commit off and auto rollback on error.
INSERT INTO Enrollment (RegNo, OfferNo, EnrGrade)
	 VALUES (1234,5679,0);
-- update the number of enrolled students
UPDATE Offering
	 SET OffNumEnrolled = OffNumEnrolled + 1
	 WHERE OfferNo = 5679;
-- See offering limit and number enrolled
SELECT OffLimit, OffNumEnrolled
	 FROM Offering
	 WHERE Offering.OfferNo = 5679;
-- Insert a student beyond the limit
INSERT INTO Enrollment (RegNo, OfferNo, EnrGrade)
	 VALUES (1236,5679,0);
SELECT *
 FROM Enrollment
 WHERE OfferNo = 5679 and RegNo = 1234 ;
-- Remove new Enrollment row and Offering update if auto commit
-- no rollback
DELETE FROM Enrollment
 WHERE RegNo = 1234 AND OfferNo = 5679;
-- Reduced OffNumbEnrolled by 1
UPDATE Offering
	 SET OffNumEnrolled = OffNumEnrolled - 1
	 WHERE OfferNo = 5679;
ROLLBACK;

Example 11.P3 depicts update propagation involving a table (Offering) related to the
trigger table (Enrollment). The EXCEPTION section aborts the action firing the trig-
ger with the RAISE EXCEPTION statement. The last line in the trigger function uses
RETURN NULL, the normal return value for a AFTER ROW trigger function.

Example 11.P3 – Trigger to update the number of enrolled students in an offering. Equivalent to example 11.27.

-- Create Trigger function
CREATE OR REPLACE FUNCTION tr_Enrollment_IA()
	 RETURNS TRIGGER AS $tr_Enrollment_IA$
BEGIN
	 BEGIN
		 UPDATE Offering
			 SET OffNumEnrolled = OffNumEnrolled + 1
			 WHERE OfferNo = NEW.OfferNo;
		 EXCEPTION
			 WHEN OTHERS THEN
				 RAISE EXCEPTION 'Database error';
			 RETURN NULL;
	 END;	
	 RETURN NULL;
END;
$tr_Enrollment_IA$ LANGUAGE plpgsql;

-- This trigger updates the number of enrolled
-- students in the related offering row.

CREATE TRIGGER tr_Enrollment_IA
AFTER INSERT
ON Enrollment
FOR EACH ROW EXECUTE FUNCTION tr_Enrollment_IA();

Mannino_8e_Book.indb 20 4/21/2022 6:16:48 PM

Appendix

-- Testing statements
-- See the offering limit and number enrolled
SELECT OffLimit, OffNumEnrolled
 FROM Offering
 WHERE Offering.OfferNo = 5679;

-- Insert the last student
INSERT INTO Enrollment (RegNo, OfferNo, EnrGrade)
VALUES (1234,5679,0);

-- See the offering limit and number enrolled
SELECT OffLimit, OffNumEnrolled
 FROM Offering
 WHERE Offering.OfferNo = 5679;

ROLLBACK; -- Use a DELETE statement to reverse if auto commit

The last two examples involve compound triggers extending triggers in 11.P2 and
11.P3. Triggers in both examples use the OR keyword for compound events includ-
ing UPDATE OF OfferNo. The trigger function for Example 11.P5 uses PG_OP, a
PostgreSQL special variable to determine the action firing the trigger. PostgreSQL
provides other special variables for trigger details although PG_OP seems the most
useful in practice. Example 11.30 provides the testing script for both Examples 11.P4
and 11.P5.

Example 11.P4 – Trigger to ensure that a seat remains in an offering when inserting or updating an enrollment row. Equivalent to

Example 11.28.

-- Drop the previous triggers to avoid interactions
DROP TRIGGER IF EXISTS tr_Enrollment_IB ON Enrollment;
DROP FUNCTION IF EXISTS tr_Enrollment_IB;

CREATE OR REPLACE FUNCTION tr_Enrollment_IUB()
	 RETURNS TRIGGER AS $tr_Enrollment_IUB$
DECLARE
 anOffLimit Offering.OffLimit%TYPE;
 anOffNumEnrolled Offering.OffNumEnrolled%TYPE;
BEGIN
 SELECT OffLimit, OffNumEnrolled
 INTO anOffLimit, anOffNumEnrolled
 FROM Offering
 WHERE Offering.OfferNo = NEW.OfferNo;
	
 IF (anOffNumEnrolled >= anOffLimit) THEN
 RAISE EXCEPTION
 'No seats remaining in offering %. Number enrolled: %.
 Offering limit: %.',
 NEW.OfferNo,anOffNumEnrolled, anOffLimit;
 END IF;
 RETURN NEW;
END;
$tr_Enrollment_IUB$ LANGUAGE plpgsql;

-- Create Trigger
-- This trigger ensures that the number of enrolled
-- students is less than the offering limit.
CREATE TRIGGER tr_Enrollment_IUB
BEFORE INSERT OR UPDATE OF OfferNo ON Enrollment
FOR EACH ROW EXECUTE FUNCTION tr_Enrollment_IUB();

Mannino_8e_Book.indb 21 4/21/2022 6:16:48 PM

Appendix

These trigger examples indicate similarity between Oracle and PostgreSQL triggers.
The PL/pgSQL language shares syntax with PL/SQL in many statements. PL/pgSQL
code in trigger functions looks like PL/SQL code in the body of Oracle triggers. The
textbook website contains the entire set of example triggers in the chapter and prob-
lem solution triggers. Self-study of these examples and problem solutions should help
students write PostgreSQL triggers and related trigger functions.

Example 11.P5 – Trigger to update the number of enrolled students in an offering when inserting, updating, or deleting an enrollment row.

Equivalent to Example 11.29.

-- Drop the previous triggers to avoid interactions
DROP TRIGGER IF EXISTS tr_Enrollment_IA ON Enrollment;
DROP FUNCTION IF EXISTS tr_Enrollment_IA;

-- Create Trigger function
CREATE OR REPLACE FUNCTION tr_Enrollment_DIUA()
	 RETURNS TRIGGER AS $tr_Enrollment_DIUA$
BEGIN
	 -- Increment the number of enrolled students for insert and update
	 IF (TG_OP = 'UPDATE' or TG_OP = 'INSERT') THEN
	 UPDATE Offering
 SET OffNumEnrolled = OffNumEnrolled + 1
 WHERE OfferNo = NEW.OfferNo;
 	 END IF;
	 -- Decrease the number of enrolled students for delete and update
	 IF (TG_OP = 'UPDATE' or TG_OP = 'DELETE') THEN
 	 UPDATE Offering
 	 SET OffNumEnrolled = OffNumEnrolled - 1
 	 WHERE OfferNo = OLD.OfferNo;
	 END IF;
	
	 RETURN NULL;
END;
$tr_Enrollment_DIUA$ LANGUAGE plpgsql;

-- Create Trigger
-- This trigger updates the number of enrolled
-- students the related offering row.
CREATE TRIGGER tr_Enrollment_DIUA
AFTER INSERT OR DELETE OR UPDATE OF OfferNo ON Enrollment
FOR EACH ROW EXECUTE FUNCTION tr_Enrollment_DIUA();

Mannino_8e_Book.indb 22 4/21/2022 6:16:48 PM

Appendix

This appendix provides details of the schema integration problem not covered in Sec-
tion 13.4.1. You need to use sample tables (Tables 13A-1 to 13A-4) in the last step of the
schema integration process to populate sample tables in the data warehouse design.
You also need to use rows in the worksheet for custom product purchases (Table 13A-5).

APPENDIX 13.A:  DETAILS OF THE SCHEMA INTEGRATION
PROBLEM

TABLE 13A-1
Sample Rows for the Supplier
Table

SuppNo SuppName SuppEmail SuppPhone SuppDisc

S2029929 ColorMeg, Inc. custrel@colormeg.com (720) 444-1231 0.10

S3399214 Connex help@connex.com (206) 432-1142 0.12

S4290202 Ethlite ordering@ethlite.com (303) 213-2234 0.05

S4298800 Intersafe orderdesk@intersafe.com (512) 443-2215 0.10

S4420948 UV Components custserv@uvcomponents.com (303) 321-0432 0.08

S5095332 Cybercx orderhelp@cybercx.com (212) 324-5683 0.00

TABLE 13A-2
Sample Rows for the Product
Table

ProdNo ProdName SuppNo ProdQOH ProdPrice ProdNextShipDate

P0036566 17 inch Color Monitor S2029929 12 $169.00 02/20/2020

P0036577 19 inch Color Monitor S2029929 10 $319.00 02/20/2020

P1114590 R3000 Color Laser Printer S3399214 5 $699.00 01/22/2020

P1412138 10 Foot Printer Cable S4290202 100 $12.00

P1445671 8-Outlet Surge Protector S4298800 33 $14.99

P1556678 CVP Ink Jet Color Printer S3399214 8 $99.00 01/22/2020

P3455443 Color Ink Jet Cartridge S3399214 24 $38.00 01/22/2020

P4200344 36-Bit Color Scanner S4420948 16 $199.99 01/29/2020

P6677900 Black Ink Jet Cartridge S3399214 44 $25.69

P9995676 Battery Back-up System S5095332 12 $89.00 02/01/2020

TABLE 13A-3
Sample Rows for the
Purchase Table

PurchNo PurchDate SuppNo PurchPayMethod PurchDelDate

P2224040 02/03/2020 S2029929 Credit 02/08/2020

P2345877 02/03/2020 S5095332 PO 02/11/2020

P3249952 02/04/2020 S3399214 PO 02/09/2020

P3854432 02/03/2020 S4290202 PO 02/08/2020

P9855443 02/07/2020 S4420948 PO 02/15/2020

TABLE 13A-4
Sample Rows for the
PurchLine Table

PurchNo ProdNo PLQty PLUnitCost

P2224040 P0036566 10 $100.00

P2224040 P0036577 10 $200.00

P2345877 P9995676 10 $45.00

P3249952 P1114590 15 $450.00

P3249952 P1556678 10 $50.00

P3249952 P3455443 25 $21.95

P3249952 P6677900 25 $12.50

P3854432 P1412138 50 $6.50

P9855443 P4200344 15 $99.00

Mannino_8e_Book.indb 23 4/21/2022 6:16:48 PM

Appendix

To estimate grain size, you should use these estimates about cardinalities of tables
and unique values of some columns.

•	 Product rows: 1,000
•	 Supplier rows: 100
•	 Purchase rows: 100,000 per year
•	 PurchLine rows: 500,000 per year
•	 Spreadsheet rows: 1,000 per month; new spreadsheet each month
•	 Unique products in a spreadsheet for one year: 100
•	 Unique suppliers in a spreadsheet for one year: 20

TABLE 13A-5
Sample Worksheet for
Custom Inventory

ProdCode ProdDesc Supp Qty Unit Price PurDate Amount

CPC1 Pencils Omart 20 $2.00 13-Feb-2020 $40.00

CPC2 Paper Smart 10 $3.50 14-Feb-2020 $35.00

CPC3 Folders Pmart 20 $1.50 11-Feb-2020 $30.00

Mannino_8e_Book.indb 24 4/21/2022 6:16:48 PM

Appendix

APPENDIX 13.B:  SOLUTION FOR THE SCHEMA INTEGRATION
PROBLEM
  1.	The dimensions in the problem are reasonably clear. Supplier, calendar, and

product are dimensions. Supplier and product come from the ERD and the
sample spreadsheet. The calendar dimension is a standard data warehouse
dimension. Calendar is a hierarchical dimension. Phone and email can be parsed
to be hierarchical as part of the supplier dimension.
•	 Supplier

–– SuppNo: ERD only
–– SuppName (Supplier table) | Supp (spreadsheet)
–– SuppPhone: ERD only; hierarchical (country code → area code → prefix →

line)
–– SuppEmail: ERD only; hierarchical (top level domain → second level

domain → local part)
•	 Calendar

–– Date columns in the ERD (ProdNextShipDate, PurchDelDate, and
PurchDate) and spreadsheet (PurchDate); hierarchical (year → month →
day)

•	 Product:
–– ProdNo: ERD only
–– ProdName (ERD) | ProdDesc (spreadsheet)
–– ProdCode: spreadsheet only

  2.	The measures mostly come from the PurchLine table and supply purchases
spreadsheet. Measures from related tables are important to associate with the
measures from the PurchLine table and Supply Purchases spreadsheet.
•	 PLQty (PurchLine table) | Qty (spreadsheet); additive measure
•	 Amount of purchase: derived additive measure from the spreadsheet
•	 PLUnitCost (PuchLine table) | Unit Price (spreadsheet); snapshot measure
•	 ProdQOH (Product table) | Stock (Spreadsheet): Semi-additive across

products but not useful to add quantity of different products. Usually average
across time periods

•	 SuppDisc (Supplier table): supplier discount; snapshot measure
•	 ProdPrice: product price; snapshot measure indicating the resale price of the

product when the purchase occurs
  3.	The most detailed grain is the combination of individual supplier, individual

product, and date.
•	 1,100 products: sum of product rows and unique products in a spreadsheet
•	 120 suppliers: sum of supplier rows and unique suppliers in a spreadsheet
•	 Days per year: 365
•	 512,000 purchases of individual products: sum of PurchLine rows and

spreadsheet rows (one year)
•	 Fact table size is determined from sum of the rows in the PurchLine table and

Spreadsheet. Thus, the individual product purchases per year are 512,000.
•	 Sparsity estimate:

–– 1 - (fact table size / product of dimensions)
–– (1 – (512,000 / (1,100*120*365)) = 0.98937
–– The data cube has mostly missing cells with slightly more than 1% of cells

with non-zero values.

Mannino_8e_Book.indb 25 4/21/2022 6:16:48 PM

Appendix

  4.	The star schema (Figure 13B.1) should support the dimensions and measures
specified in parts 1 and 2. There are two relationships between the Calendar
and InvFact tables to record both the purchase and delivery dates. Product
type is a new derived column indicating the data source (merchandise for
resale or supply for internal usage). ProdNextShipDate was dropped in the
data warehouse design. The problem did not indicate a clear usage the data
warehouse. It could be added as another relationship from Calendar to InvFact if
the date was useful for business intelligence reasoning. The relationship would
be incomplete for the spreadsheet data source.

The star schema design involves design transformations, flatten and merge.
The InvFact table involves a flatten transformation of the Purchase and Purch-
Line tables. The date relationships (PurchDate and DelDate) group products
purchased together. The PurchNo column can be added to the InvFact table to
provide a link to source data in the Purchase table.

 The merge transformation was applied to combine (1) Supplier table and
Supp column in the spreadsheet, (2) Product table and spreadsheet columns
(ProdCode and ProdDesc), and (3) flattened table from the Purchase database
(InvFact) with spreadsheet columns (Qty, Unit Price, PurchaseDate, and Stock).

  5.	The DelDate relationship is an incomplete fact-dimension relationship as the
delivery date is missing in the supply spreadsheet. It is probably not possible
to add to existing data but second data source possibly can be changed in the
future so delivery date is collected on the spreadsheet. If delivery date is the
same as purchase date for supplies, the same date can be used as a default value.

There are also missing values for SuppEmail and SuppPhone for the suppli-
ers from the spreadsheet. Although the Supplies relationship is mandatory, these
missing values make the relationship missing for the SuppEmail and SuppPhone
columns. Additional data collection can resolve this incompleteness as no reliable
default value exists.

  6.	The data warehouse tables (Tables 13B-1 to 13B-5) have been derived from the
sample rows in the source tables and spreadsheet. The delivery date for the
supply purchases uses the default value of the purchase date since the values
are missing the source data. New primary key values have been generated for
data from the spreadsheet data source.

FIGURE 13B.1
ERD for Retail Fitness
Database

InvFactNo
InvFactQty
IFUnitCost
IFQOH
IFProdPrice
IFSuppDisc

InvFact

SuppNo
SuppName
SuppPhone
SuppEmail
SuppDisc

Supplier

CalId
CalDay
CalMonth
CalYear

Calendar

Supplies

ProdNo
ProdName
ProdType

Product

ProdOf

PurchDate

DelDate

Mannino_8e_Book.indb 26 4/21/2022 6:16:49 PM

Appendix

TABLE 13B-1
Sample Rows for the
Supplier Dimension Table

SuppNo SuppName SuppEmail SuppPhone

S2029929 ColorMeg, Inc. custrel@colormeg.com (720) 444-1231

S3399214 Connex help@connex.com (206) 432-1142

S4290202 Ethlite ordering@ethlite.com (303) 213-2234

S4298800 Intersafe orderdesk@intersafe.com (512) 443-2215

S4420948 UV Components custserv@uvcomponents.com (303) 321-0432

S5095332 Cybercx orderhelp@cybercx.com (212) 324-5683

S1111111 Omart [null] [null]

S1111112 Smart [null] [null]

S1111113 Pmart [null] [null]

TABLE 13B-2
Sample Rows for the Product
Dimension Table

ProdNo ProdName ProdType

P0036566 17 inch Color Monitor Merch

P0036577 19 inch Color Monitor Merch

P1114590 R3000 Color Laser Printer Merch

P1412138 10 Foot Printer Cable Merch

P1445671 8-Outlet Surge Protector Merch

P1556678 CVP Ink Jet Color Printer Merch

P3455443 Color Ink Jet Cartridge Merch

P4200344 36-Bit Color Scanner Merch

P6677900 Black Ink Jet Cartridge Merch

P9995676 Battery Back-up System Merch

P111111 No 2 pencils Supp

P111112 Copier paper Supp

P111113 File folders Supp

TABLE 13B-3
Sample Rows for the
Calendar Dimension Table

CalId CalDay CalMonth CalYear

C10000211 1 2 2020

C10000212 2 2 2020

C10000213 3 2 2020

C10000214 4 2 2020

C10000215 5 2 2020

C10000216 6 2 2020

C10000217 7 2 2020

C10000218 8 2 2020

C10000219 9 2 2020

C10000220 10 2 2020

C10000221 11 2 2020

C10000222 12 2 2020

C10000223 13 2 2020

C10000224 14 2 2020

C10000225 15 2 2020

C10000226 16 2 2020

C10000227 17 2 2020

Mannino_8e_Book.indb 27 4/21/2022 6:16:49 PM

Appendix

TABLE 13B-5
Sample Rows for the InvFact
Measure Table (Part 2)

InvFactNo PurchCalNo DelCalNo

I2224040 C10000213 C10000218

I2224041 C10000213 C10000218

I2224042 C10000213 C10000221

I2224043 C10000214 C10000219

I2224044 C10000214 C10000219

I2224045 C10000214 C10000219

I2224046 C10000214 C10000219

I2224047 C10000213 C10000218

I2224048 C10000217 C10000225

I2224049 C10000223 C10000223

I2224050 C10000224 C10000224

I2224051 C10000221 C10000221

TABLE 13B-4
Sample Rows for the InvFact
Measure Table (Part 1)

InvFactNo ProdNo SuppNo IFQty IFUnitCost IFQOH IFProdPrice IFSuppDisc

I2224040 P0036566 S2029929 10 $100.00 12 $169.00 0.10

I2224041 P0036577 S2029929 10 $200.00 10 $319.00 0.10

I2224042 P9995676 S5095332 10 $45.00 12 $89.00 0.00

I2224043 P1114590 S3399214 15 $450.00 5 $699.00 0.12

I2224044 P1556678 S3399214 10 $50.00 8 $99.00 0.12

I2224045 P3455443 S3399214 25 $21.95 24 $38.00 0.12

I2224046 P6677900 S3399214 25 $12.50 44 $25.69 0.12

I2224047 P1412138 S4290202 50 $6.50 100 $12.00 0.05

I2224048 P4200344 S4420948 15 $99.00 16 $199.99 0.08

I2224049 P111111 S1111111 20 $2.00 1 [null] [null]

I2224050 P111112 S1111112 10 $3.50 2 [null] [null]

I2224051 P111113 S1111113 20 $1.50 0 [null] [null]

Mannino_8e_Book.indb 28 4/21/2022 6:16:49 PM

Appendix

This appendix contains statements to create tables used in the examples of Section
14.3.5 for the MERGE, multiple table INSERT, and INSERT …. ON CONFLICT state-
ments. A document on the textbook’s website contains complete statements to create
(CREATE TABLE) and populate (INSERT) these tables.

-- Create table statements for MERGE examples in Section
-- 14.3.5 Also used for Examples 14.5 and 14.6
CREATE TABLE SSCustomer
(CustId 	 CHAR(8),
 	 CustName 	 VARCHAR(30),
 	 CustPhone 	VARCHAR(15),
	 CustStreet	 VARCHAR(50),
	 CustCity	 VARCHAR(30),
 	 CustState	 VARCHAR(20),
 	 CustZip	 VARCHAR(10),
	 CustNation	 VARCHAR(20),
 CONSTRAINT PKSSCustomer PRIMARY KEY (CustId));

CREATE TABLE SSCustomerChanges
(CustId 	 CHAR(8),
 	 CustName	 VARCHAR(30),
	 CustPhone	 VARCHAR(15),
	 CustStreet	 VARCHAR(50),
	 CustCity	 VARCHAR(30),
 	 CustState	 VARCHAR(20),
 	 CustZip	 VARCHAR(10),
	 CustNation	 VARCHAR(20),
 CONSTRAINT PKSSCustomerChanges PRIMARY KEY (CustId));

CREATE TABLE SSCustomerChanges2
(CustId 	 CHAR(8),
 	 CustName	 VARCHAR(30),
	 CustPhone	 VARCHAR(15),
	 CustStreet	 VARCHAR(50),
	 CustCity	 VARCHAR(30),
 	 CustState	 VARCHAR(20),
 	 CustZip	 VARCHAR(10),
	 CustNation	 VARCHAR(20),
 CONSTRAINT PKSSCustomerChanges2 PRIMARY KEY (CustId)
);

-- Section 14.3.5
-- Create table statements for INSERT examples in
CREATE TABLE ProductSale
(Product_ID	 INTEGER NOT NULL,
 ProductName	 VARCHAR(50),
 ProductCategory	VARCHAR(50),
 Qtr1		 INTEGER,
 Qtr2		 INTEGER,
 Qtr3		 INTEGER,
 Qtr4		 INTEGER);

APPENDIX 14.A:  CREATE TABLE STATEMENTS FOR SECTION 14.3.5

Mannino_8e_Book.indb 29 4/21/2022 6:16:49 PM

Appendix

-- CREATE TABLE statements for Example 14.3
CREATE TABLE QTR1Sale
(Product_ID	 INTEGER NOT NULL,

 ProductName	 VARCHAR(50),
 ProductCategory	 VARCHAR(50),
 Qtr1	 INTEGER);

-- Create QTR2Sale table
CREATE TABLE Qtr2Sale
(Product_ID	 INTEGER NOT NULL,

 ProductName	 VARCHAR(50),
 ProductCategory	 VARCHAR(50),
 Qtr2	 INTEGER);

-- Create QTR3Sale table
CREATE TABLE Qtr3Sale
(Product_ID	 INTEGER NOT NULL,

 ProductName	 VARCHAR(50),
 ProductCategory	 VARCHAR(50),
 Qtr3	 INTEGER);

-- Create QTR4Sale table
CREATE TABLE Qtr4Sale
(Product_ID	 INTEGER NOT NULL,

 ProductName	 VARCHAR(50),
 ProductCategory	 VARCHAR(50),
 Qtr4	 INTEGER);

-- CREATE TABLE statements for Example 14.4
CREATE TABLE ElectronicsSale
(Product_ID	 INTEGER NOT NULL,
 ProductName	 VARCHAR(50),
 ProductCategory	 VARCHAR(50),
 TotalSales	 INTEGER);

-- Create BooksSale table
CREATE TABLE BooksSale
(Product_ID	 INTEGER NOT NULL,
 ProductName	 VARCHAR(50),
 ProductCategory	 VARCHAR(50),
 TotalSales	 INTEGER);

-- Create MoviesSale table
CREATE TABLE MoviesSale
(Product_ID	 INTEGER NOT NULL,
 ProductName	 VARCHAR(50),
 ProductCategory	 VARCHAR(50),
 TotalSales	 INTEGER);

Mannino_8e_Book.indb 30 4/21/2022 6:16:49 PM

Appendix

This appendix contains SQL statements to create tables used in problems at the end
of the chapter. A document on the textbook’s website contains complete statements to
create (CREATE TABLE) and populate (INSERT) these tables.

-- Create table statements for problems 14.4 and 14.13
CREATE TABLE SSItem
(ItemId	 CHAR(8),
 	 ItemName	 VARCHAR(30),
	 ItemBrand	 VARCHAR(30),
 	 ItemCategory	 VARCHAR(30),
 	 ItemUnitPrice	 DECIMAL(12,2),
CONSTRAINT PKSSItem PRIMARY KEY (ItemId));

CREATE TABLE SSItemChanges1
(ItemId	 CHAR(8),
 	 ItemName	 VARCHAR(30),
	 ItemBrand	 VARCHAR(30),
 	 ItemCategory	 VARCHAR(30),
 	 ItemUnitPrice	 DECIMAL(12,2),
CONSTRAINT PKSSItemChanges1 PRIMARY KEY (ItemId));

-- New table required for problem 14.5 and 14.14
-- Existing item changes have null values except for PK
-- and changed columns
CREATE TABLE SSItemChanges2
(ItemId 	 CHAR(8),
 	 ItemName	 VARCHAR(30),
	 ItemBrand	 VARCHAR(30),
 	 ItemCategory	 VARCHAR(30),
 	 ItemUnitPrice	 DECIMAL(12,2),
CONSTRAINT PKSSItemChanges2 PRIMARY KEY (ItemId));

-- Tables in problems 14.6 and 14.7.
CREATE TABLE ProductSale1
(Product_ID	 INTEGER NOT NULL,
 ProductName	 VARCHAR(50),
 ProductCategory	 VARCHAR(50),
 SalesYear	 INTEGER,
 SalesAmt	 INTEGER);

-- Create ProductSales2018 table
CREATE TABLE ProductSales2018
(Product_ID	 INTEGER NOT NULL,
 ProductName	 VARCHAR(50),
 ProductCategory 	 VARCHAR(50),
 SalesAmt	 INTEGER);

-- Create ProductSales2019 table
CREATE TABLE ProductSales2019
(Product_ID	 INTEGER NOT NULL,
 ProductName	 VARCHAR(50),
 ProductCategory	 VARCHAR(50),
 SalesAmt	 INTEGER);

-- Create ProductSales2020 table

APPENDIX 14.B:  CREATE TABLE STATEMENTS FOR CHAPTER
PROBLEMS

Mannino_8e_Book.indb 31 4/21/2022 6:16:50 PM

Appendix

CREATE TABLE ProductSales2020
(Product_ID	 INTEGER NOT NULL,
 ProductName	 VARCHAR(50),
 ProductCategory	 VARCHAR(50),
 SalesAmt	 INTEGER);

-- Create ProductSales2021 table
CREATE TABLE ProductSales2021
(Product_ID	 INTEGER NOT NULL,
 ProductName	 VARCHAR(50),
 ProductCategory	 VARCHAR(50),
 SalesAmt	 INTEGER);

-- Tables for problems 14.8 and 14.9
CREATE TABLE ProductSale2
(Product_ID	 INTEGER NOT NULL,
 ProductName	 VARCHAR(50),
 ProductCategory	 VARCHAR(50),
 Qtr1	 INTEGER,
 Qtr2	 INTEGER,
 Qtr3	 INTEGER,
 Qtr4	 INTEGER);

-- Create YEAR_LOW_SALES table
CREATE TABLE YEAR_LOW_SALES
(Product_ID	 INTEGER NOT NULL,
 ProductName	 VARCHAR(50),
 TotalSales	 INTEGER);

-- Create YEAR_MID_SALES table
CREATE TABLE YEAR_MID_SALES
(Product_ID	 INTEGER NOT NULL,
 ProductName	 VARCHAR(50),
 TotalSales	 INTEGER);

-- Create YEAR_HIGH_SALES table
CREATE TABLE YEAR_HIGH_SALES
(Product_ID	 INTEGER NOT NULL,
 ProductName	 VARCHAR(50),
 TotalSales	 INTEGER);

-- Tables for problem 14.10
CREATE TABLE Mobile_Bill
(CustID	 INTEGER NOT NULL,
 CurrentAmt	 DECIMAL (10,2),
 PastAmt	 DECIMAL (10,2),
 CONSTRAINT	 MBCustId PRIMARY KEY (CustId));

CREATE TABLE Mobile_Usage
(CustID	 INTEGER NOT NULL,
 MinutesUsed	 INTEGER);

-- Tables for problems 14.11 and 14.12

CREATE TABLE Mobile_Customer
(CustID	 INTEGER	 NOT NULL,
 CustName	 VARCHAR(50)	 NOT NULL,

Mannino_8e_Book.indb 32 4/21/2022 6:16:50 PM

Appendix

 CustState	 VARCHAR(2)	 NOT NULL,
 CustType	 VARCHAR(15)	 NOT NULL,
 CustAge	 INTEGER,
 CurrentAmt	 DECIMAL(10,2),
 CONSTRAINT	 PK_CustID PRIMARY KEY (CustID));

-- Create three summary tables for customers at three
-- different levels: gold, silver, and bronze.
CREATE TABLE Mobile_Gold
(CustID	 INTEGER	 NOT NULL,
 CustName	 VARCHAR(50)	 NOT NULL,
 CustState	 VARCHAR(2)	 NOT NULL,
 CustType	 VARCHAR(15)	 NOT NULL,
 CurrentAmt	 DECIMAL(10,2)	 NOT NULL);

CREATE TABLE Mobile_Silver
(CustID	 NUMBER(10)	 NOT NULL,
 CustName	 VARCHAR(50)	 NOT NULL,
 CustState	 VARCHAR(2)	 NOT NULL,
 CustType	 VARCHAR(15)	 NOT NULL,
 CurrentAmt	 DECIMAL(10,2)	 NOT NULL);

CREATE TABLE Mobile_Bronze
(CustID	 INTEGER	 NOT NULL,
 CustName	 VARCHAR(50)	 NOT NULL,
 CustState	 VARCHAR(2)	 NOT NULL,
 CustType	 VARCHAR(15)	 NOT NULL,
 CurrentAmt	 DECIMAL (10,2)	 NOT NULL);

-- Create table statements for problem 14.15
CREATE TABLE SSItem
(ItemId	 CHAR(8),
 ItemName	 VARCHAR(30)	 NOT NULL,
 ItemBrand	 VARCHAR(30)	 NOT NULL,
 ItemCategory	 VARCHAR(30)	 NOT NULL,
 ItemUnitPrice	 DECIMAL(12,2)	NOT NULL,
CONSTRAINT PKSSItem PRIMARY KEY (ItemId));

-- New table required for problem 14.5 and 14.14
-- Existing item changes have null values except for PK
-- and changed columns
CREATE TABLE SSItemChanges2
(ItemId 	 CHAR(8),
 ItemName	 VARCHAR(30),
 ItemBrand	 VARCHAR(30),
 ItemCategory	 VARCHAR(30),
 ItemUnitPrice	 DECIMAL(12,2),
CONSTRAINT PKSSItemChanges2 PRIMARY KEY (ItemId));

Mannino_8e_Book.indb 33 4/21/2022 6:16:50 PM

Appendix

APPENDIX 16.A:  SQL SYNTAX SUMMARY
This appendix summarizes the SQLstandards syntax for the CREATE/DROP ROLE
statements, the GRANT/REVOKE statements, the CREATE DOMAIN statement, and
the CREATE ASSERTION statement. The conventions used in the syntax notation are
identical to those used at the end of Chapter 3.

CREATE and DROP ROLE Statements

CREATE ROLE RoleName
 [WITH ADMIN UserName { CURRENT_USER | CURRENT_ROLE }]

DROP ROLE RoleName

GRANT and REVOKE Statements

-- GRANT statement for privileges
GRANT { <Privilege>* | ALL PRIVILEGES } ON ObjectName
 TO UserName* [WITH GRANT OPTION]

<Privilege>:
 { SELECT [(ColumnName*)] |
 DELETE |
 INSERT [(ColumnName*)] |
 REFERENCES [(ColumnName*)] |
 UPDATE [(ColumnName*)]
 USAGE |
 TRIGGER |
 UNDER |
 EXECUTE }

-- GRANT statement for roles
GRANT RoleName*
 TO UserName* [WITH ADMIN OPTION]

-- REVOKE statement for privileges
REVOKE [GRANT OPTION FOR] <Privilege>*
 ON ObjectName FROM UserName*
 [GRANTED BY { CURRENT_USER | CURRENT_ROLE }]
 { CASCADE | RESTRICT }

-- REVOKE statement for roles
REVOKE [ADMIN OPTION FOR] RoleName*
 FROM UserName*
 [GRANTED BY { CURRENT_USER | CURRENT_ROLE }]
 { CASCADE | RESTRICT }

CREATE DOMAIN and DROP DOMAIN Statements

CREATE DOMAIN DomainName DataType
 [CHECK (<Domain-Condition>)]

<Domain-Condition>:
 { VALUE <Comparison-Operator> Constant |
 VALUE BETWEEN Constant AND Constant |
 VALUE IN (Constant*) }

Mannino_8e_Book.indb 34 4/21/2022 6:16:50 PM

Appendix

<Comparison-Operator>:
 { = | < | > | <= | >= | <> }

DROP DOMAIN DomainName { CASCADE | RESTRICT }

CREATE ASSERTION and DROP ASSERTION Statements

CREATE ASSERTION AssertionName
 CHECK (<Group-Condition>)

<Group-Condition>: -- �initially defined in Chapter 4 and extended in
Chapter 9

DROP ASSERTION AssertionName { CASCADE | RESTRICT }

Mannino_8e_Book.indb 35 4/21/2022 6:16:50 PM

Appendix

APPENDIX 17.A:  SQL SYNTAX SUMMARY
This appendix summarizes SQL syntax for the constraint timing clause, the SET
CONSTRAINTS statement, the SET TRANSACTION statement, and the save point
statements discussed in the chapter. The conventions used in the syntax notation are
identical to those used at the end of Chapter 3.

Constraint Timing Clause

CREATE TABLE TableName
 (<Column-Definition>* [, <Table-Constraint>*])

<Column-Definition>: ColumnName DataType
 [DEFAULT { DefaultValue | USER | NULL }]
 [<Column-Constraint>]

<Column-Constraint>: [CONSTRAINT ConstraintName]
 { NOT NULL |
 <Foreign-Key-Constraint> | -- defined in Chapter 3
 <Uniqueness-Constraint> | -- defined in Chapter 3
 <Check-Constraint> } -- defined in Chapter 16
 [<Timing-Clause>]

<Table-Constraint>: [CONSTRAINT ConstraintName]
 { <Primary-Key-Constraint> | -- defined in Chapter 3
 <Foreign-Key-Constraint> | -- defined in Chapter 3
 <Uniqueness-Constraint> | -- defined in Chapter 3
 <Check-Constraint> } -- defined in Chapter 3
 [<Timing-Clause>]

<Timing-Clause>:
 { NOT DEFERRABLE |
 DEFERRABLE { INITIALLY IMMEDIATE |
 INITIALLY DEFERRED } }

CREATE ASSERTION AssertionName
 CHECK (<Group-Condition>) [<Timing-Clause>]

<Group-Condition>: -- defined in Chapter 4

SET CONSTRAINTS Statement

SET CONSTRAINTS { ALL | ConstraintName* }
 { IMMEDIATE | DEFERRED }

SET TRANSACTION Statement

SET [LOCAL] TRANSACTION <Mode>*

<Mode>: { <Isolation-Level> | <Access-Mode> |
 <Diagnostics> }

<Isolation-Level>: ISOLATION LEVEL
 { SERIALIZABLE |

Mannino_8e_Book.indb 36 4/21/2022 6:16:50 PM

Appendix

 REPEATABLE READ |
 READ COMMITTED |
 READ UNCOMMITTED }

<Access-Mode>: { READ WRITE | READ ONLY }

<Diagnostics>: DIAGNOSTICS SIZE Constant

Save Point Statements

SAVEPOINT <SavePointName> -- creates a save point

RELEASE <SavePointName> -- deletes a save point

ROLLBACK TO SAVEPOINT <SavePointName> -- rollback to a save point

Mannino_8e_Book.indb 37 4/21/2022 6:16:50 PM

Appendix

This appendix contains the complete set of INSERT statements for the collections
(Agent, Home, AgentHome, Agent2, and Home2) used in examples in Section 19.5.2.
Before inserting documents, you need to create a bucket in the Couchbase Dashboard.
After setting the bucket and scope in the Query Workbench, you must create collec-
tions and primary indexes before inserting or retrieving documents. See the document
on the textbook’s website for precise details about creating collections and indexes in
the Query Workbench of Couchbase.

// Create collections
CREATE COLLECTION Agent;
CREATE COLLECTION Home;
CREATE COLLECTION AgentHome;
CREATE COLLECTION Agent2;
CREATE COLLECTION Home2;

// Create indexes
CREATE PRIMARY INDEX ON Agent;
CREATE PRIMARY INDEX ON Home;
CREATE PRIMARY INDEX ON AgentHome;
CREATE PRIMARY INDEX ON Agent2;
CREATE PRIMARY INDEX ON Home2;

// Traditional table design with foreign keys
// INSERT �statement adding 3 documents in the Agent
// collection
// INSERT statement can add multiple JSON documents by
// repeating VALUES clause

INSERT INTO Agent (KEY, VALUE)
VALUES ("A871111",
 {"AgentId":"A871111", "AgFirstName":"Willie",
 "AgLastName":"Jones", "AgPhone":"(720)555-1212"}),

VALUES ("A991111",
 {"AgentId":"A991111", "AgFirstName":"Jorge",
 "AgLastName":"Lopez", "AgPhone":"(303)435-9999"}),

VALUES ("A999222",
 {"AgentId":"A999222", "AgFirstName":"Aimee",
 "AgLastName":"Chan", "AgPhone": "(303)555-8888"});

// One INSERT statement for all home documents
INSERT INTO Home (KEY, VALUE)
VALUES ("H111111",
 {"HomeId":"H111111","HomeNoBdrms":3,
 "HomeNoBathrms":2,"HomeAge":15,"AgentId":"A871111",
 "HomeAddr":{"City":"Denver","State":"CO","ZipCode":80113}
}),

APPENDIX 19.A:  INSERT STATEMENTS FOR N1QL

Mannino_8e_Book.indb 38 4/21/2022 6:16:50 PM

Appendix

VALUES ("H222222",
 {"HomeId":"H2222222","HomeNoBdrms":4,
 "HomeNoBathrms":3,"HomeAge":25,"AgentId":"A871111",
 �"HomeAddr":{"City":"Centennial","State":"CO",

"ZipCode":80112} }),

VALUES ("H333333",
 {"HomeId":"H333333","HomeNoBdrms":2,
 "HomeNoBathrms":2,"HomeAge":3,"AgentId":"A991111",
 "HomeAddr":{"City":"Denver","State":"CO","ZipCode":80104}
}),

VALUES ("H444444",
 {"HomeId":"H444444","HomeNoBdrms":5,
 "HomeNoBathrms":3,"HomeAge":10,"AgentId":"A999222",
 "HomeAddr":{"City":"Aurora","State":"CO","ZipCode":80107}
}),

VALUES ("H555555",
 {"HomeId":"H555555","HomeNoBdrms":3,
 "HomeNoBathrms":2,"HomeAge":null,"AgentId":"A999222",
 �"HomeAddr":{"City":"Centennial","State":"CO",

"ZipCode":80112} }),

VALUES ("HomeH666666",
 {"HomeId":"H666666","HomeNoBdrms":4,
 "HomeNoBathrms":2,"HomeSold":false,"AgentId":"A999222",
 "HomeAddr":{"City":"Aurora","State":"CO","ZipCode":80109}
});

// Total nested representation with homes nested inside
// agents
// INSERT statement for the AgentHome collection
INSERT INTO AgentHome (KEY, VALUE)
 VALUES ("AH871111",
 {"AgentId":"A871111", "AgFirstName":"Willie",
 "AgLastName":"Jones", "AgPhone":"(720)555-1212",
 "Home":[
 {"HomeId":"H111111","HomeNoBdrms":3,
 "HomeNoBathrms":2,"HomeAge":15,
 "HomeAddr":{"City":"Denver","State":"CO","ZipCo
de":80110}},
 {"HomeId":"H222222","HomeNoBdrms":4,
 "HomeNoBathrms":3,"HomeAge":25,
 "HomeAddr":{"City":"Centennial","State":"CO",
"ZipCode":80112}}] }),

VALUES ("AH991111",
 {"AgentId":"A991111", "AgFirstName":"Jorge",
 "AgLastName":"Lopez", "AgPhone":"(303)435-9999",
 "Home":[
 {"HomeId":"H333333","HomeNoBdrms":2,
 "HomeNoBathrms":2,"HomeAge":3,
 "HomeAddr":{"City":"Denver","State":"CO",
"ZipCode":80104}}] }),

Mannino_8e_Book.indb 39 4/21/2022 6:16:50 PM

Appendix

VALUES ("AH999222",
 {"AgentId":"A999222", "AgFirstName":"Aimee",
 "AgLastName":"Chan", "AgPhone":"(303)555-8888",
 "Home":[
 {"HomeId":"H444444","HomeNoBdrms":5,
 "HomeNoBathrms":3,"HomeAge":10,
 "HomeAddr":{"City":"Aurora","State":"CO",
"ZipCode":80107}},
 {"HomeId":"H555555","HomeNoBdrms":3,
 "HomeNoBathrms":2,"HomeAge":null,
 "HomeAddr":{"City":"Centennial","State":"CO",
"ZipCode":80112}},
 {"HomeId":"H666666","HomeNoBdrms":4,
 "HomeNoBathrms":2,"HomeSold":false,
 "HomeAddr":{"City":"Aurora","State":"CO",
"ZipCode":80109} }] });

// Partial nested representation with home ids nested inside
// agents
// INSERT statement for the Agent2 collection with array of
// home ids
INSERT INTO Agent2 (KEY, VALUE)
VALUES ("A871111",
 {"AgentId":"A871111", "AgFirstName":"Willie",
 "AgLastName":"Jones", "AgPhone":"(720)555-1212",
 "HomeId":["H111111","H222222"] }),

VALUES ("A991111",
 {"AgentId":"A991111", "AgFirstName":"Jorge",
 "AgLastName":"Lopez", "AgPhone":"(303)435-9999",
 "HomeId":["H333333"] }),

VALUES ("A999222",
 {"AgentId":"A999222", "AgFirstName":"Aimee",
 "AgLastName":"Chan", "AgPhone": "(303)555-8888",
 "HomeId":["H444444","H555555","H666666"] });

// INSERT statement for the Home2 collection
INSERT INTO Home2 (KEY, VALUE)
VALUES ("H111111",
 {"HomeId":"H111111","HomeNoBdrms":3,
 "HomeNoBathrms":2,"HomeAge":15,
 "HomeAddr":{"City":"Denver","State":"CO","ZipCode":80113}
}),

VALUES ("H222222",
 {"HomeId":"H2222222","HomeNoBdrms":4,
 "HomeNoBathrms":3,"HomeAge":25,
 "HomeAddr":{"City":"Centennial","State":"CO",
"ZipCode":80112} }),

VALUES ("H333333",
 {"HomeId":"H333333","HomeNoBdrms":2,
 "HomeNoBathrms":2,"HomeAge":3,

Mannino_8e_Book.indb 40 4/21/2022 6:16:50 PM

Appendix

 "HomeAddr":{"City":"Denver","State":"CO","ZipCode":80104}
}),

VALUES ("H444444",
 {"HomeId":"H444444","HomeNoBdrms":5,
 "HomeNoBathrms":3,"HomeAge":10,
 "HomeAddr":{"City":"Aurora","State":"CO","ZipCode":80107}
}),

VALUES ("H555555",
 {"HomeId":"H555555","HomeNoBdrms":3,
 "HomeNoBathrms":2,"HomeAge":null,
 "HomeAddr":{"City":"Centennial","State":"CO",
"ZipCode":80112} }),

VALUES ("H666666",
 {"HomeId":"H666666","HomeNoBdrms":4,
 "HomeNoBathrms":2,"HomeSold":false,
 "HomeAddr":{"City":"Aurora","State":"CO","ZipCode":80109}
});

Mannino_8e_Book.indb 41 4/21/2022 6:16:50 PM

Appendix

PostgreSQL supports new base types with a standard set of features and storage struc-
tures for efficient usage. PostgreSQL requires tedious implementation of functions for
input, output, storage, and other standard purposes for new base types. Implementa-
tion of the standard functions must be done in a programming language such as C.
PostgreSQL does not support inheritance for new base types.

Beyond new base types, PostgreSQL supports a mixed set of object database fea-
tures with some variation from the SQL standard. The following list summarizes Post-
greSQL object features noting deviation from the SQL standard and Oracle.

•	 PostgreSQL supports user-defined composite types but lacks type inheritance as
indicated in the SQL standard and implemented in Oracle.

•	 PostgreSQL supports table inheritance as subtables inherit columns and some
constraints from ancestor tables. Subtables do not inherit indexes and foreign key
constraints from ancestor tables.

•	 PostgreSQL supports set inclusion for subtable families as indicated in the SQL
standard and Section 19.2. Set inclusion involves propagation of modification
operations (INSERT, UPDATE, and DELETE) for subtables to ancestor tables.
Support for subtable families in PostgreSQL contrasts with limited support in
Oracle through type inheritance.

•	 PostgreSQL supports object identifiers at the storage level but lacks support in
SQL statements. PostgreSQL does not support REF columns so that foreign keys
must be used. PostgreSQL does not support the DEREF function because REF
columns cannot be defined. Oracle supports object identifiers and REF columns.

The remainder of this appendix demonstrates PostgreSQL object features to contrast
with the SQL standard and Oracle. The examples correspond to SQL standard exam-
ples in Section 19.2.

Example 19.B.1 demonstrates user-defined composite types. PostgreSQL does not
support methods and functions for composite types so only variables can be defined.
Since PostgreSQL lacks subtypes, the Colorpoint type cannot be defined as a subtype
of PointPG.

APPENDIX 19.B:  OBJECT DATABASE FEATURES IN POSTGRESQL

Example 19.B.1 – PointPG type in PostgreSQL. Corresponds to example 19.1 except for the name change to avoid conflict with the base Point

type in PostgreSQL.

CREATE TYPE PointPG AS
(X FLOAT,
 Y FLOAT) ;

Example 19.B.2 demonstrates user-defined composite types for addresses and agents.
PostgreSQL supports composite types used with columns and typed tables. A sequence
provides primary key values for the typed Agent table because PostgreSQL does not
support object identifiers for primary key columns.

Mannino_8e_Book.indb 42 4/21/2022 6:16:50 PM

Appendix

Example 19.B.2 – AddressType and AgentType type and typed table Agent in PostgreSQL. Corresponds to example 19.6.

CREATE TYPE AddressType AS
 (Street	 VARCHAR(50),
 City	 VARCHAR(30),
 State	 CHAR(2),
 Zip	 CHAR(9));

CREATE TYPE AgentType AS
(AgentNo	 INTEGER,
 AName	 VARCHAR(30),
 Address	 AddressType,
 Phone	 CHAR(13),
 Email	 VARCHAR(50));

CREATE SEQUENCE AgentNoSeq
START 1 INCREMENT 1;

CREATE TABLE Agent OF AgentType
(AgentNo PRIMARY KEY DEFAULT NEXTVAL('AgentNoSeq'));

Example 19.B.3 – PropertyType and typed table Property in PostgreSQL. Corresponds to example 19.7. REF types not supported in

PostgreSQL.

CREATE TYPE PropertyType AS
(PropNo	 INTEGER,
 Address	 AddressType,
 SqFt	 INTEGER,
 PView	 BYTEA, -- BYTEA is PostgreSQL data type for BLOB
 Location	 Point,
 AgentNo	 INTEGER);

CREATE SEQUENCE PropNoSeq
START 1 INCREMENT 1;

CREATE TABLE Property OF PropertyType
(PropNo PRIMARY KEY DEFAULT NEXTVAL('PropNoSeq'),
 AgentNo REFERENCES Agent);

Example 19.B.3 demonstrates another typed table (Property). Because PostgreSQL does
not support REF columns with object identifiers, traditional foreign keys must be used.
The PropertyType contains the AgentNo variable. In the typed Property table, a foreign
key constraint extends the data type (PropertyType) used to define the table.

Example 19.B.4 demonstrates table inheritance with the Residential and Industrial
tables. PostgreSQL uses the INHERITS keyword at the end of a CREATE TABLE state-
ment instead of the UNDER keyword in the SQL standard. In the Residential table, the
ARRAY data type allows a maximum size although PostgreSQL does not check for
array limits in INSERT statements.

Mannino_8e_Book.indb 43 4/21/2022 6:16:50 PM

Appendix

Example 19.B.5 demonstrates INSERT statements into subtables. PostgreSQL auto-
matically inserts into the parent Property table. Since the primary keys use default val-
ues, the primary key columns do not appear in the INSERT statements. For composite
data types, the ROW keyword must be used. The name of the composite data type
(AddressType) cannot be used in INSERT statements.

Example 19.B.4 – Residential and Industrial subtables inheriting from Property. Corresponds to example 19.8.

CREATE TABLE Residential
(
 BedRooms	 INTEGER,
 BathRooms	 INTEGER,
 Assessments DECIMAL(9,2) ARRAY[6]
) INHERITS (Property);

CREATE TABLE Industrial
(Zoning		 VARCHAR(20),
 AccessDesc	 VARCHAR(20),
 RailAvailable	 BOOLEAN,
 Parking		 VARCHAR(10)
) INHERITS (Property);

Example 19.B.5 – INSERT statements for agents and properties. This example extends examples 19.9 and 19.11.

INSERT INTO Agent
(AName, Address, Email, Phone)
VALUES ('Sue Smith',
 ROW('123 Any Street', 'Denver', 'CO', '80217'),
 'sue.smith@anyisp.com', '13031234567');

INSERT INTO Residential
(Address, SqFt, AgentNo, BedRooms, BathRooms, Assessments)
VALUES(ROW('123 Any Street', 'Denver', 'CO', '80217'),
 2000, CurrVal('AgentNoSeq'), 3, 2, ARRAY[190000, 200000]);

INSERT INTO Industrial
(Address, SqFt, AgentNo, Zoning, AccessDesc, RailAvailable, Parking)
VALUES(ROW('123 Big Street', 'Parker', 'CO', '80234'),
 4000, CurrVal('AgentNoSeq'), 'A1', 'Street', FALSE, 'Large lot');

Example 19.B.6 demonstrates INSERT statements into subtables like Example 19.B.5.
The current values of the sequences advance after each INSERT statement. The cur-
rent value of the AgentNoSeq sequence is the same in both INSERT statements for the
Residential table.

Mannino_8e_Book.indb 44 4/21/2022 6:16:50 PM

Appendix

Example 19.B.7 demonstrates an UPDATE statement for the Residential subtable. The
UPDATE statement subtracts 1 from the current value of each sequence to obtain pri-
mary key values for the last Residential row and first Agent row.

Example 19.B.6 – INSERT statements for agents and properties. This example extends examples 19.10 and 19.11.

INSERT INTO Agent
(AName, Address, Email, Phone)
VALUES ('John Smith',
 ROW('123 Big Street', 'Boulder', 'CO', '80217'),
 'john.smith@bigisp.com', '13034567123');

INSERT INTO Residential
(Address, SqFt, AgentNo, BedRooms, BathRooms, Assessments)
VALUES(ROW('123 Big Street', 'Denver', 'CO', '80203'),
 2000, CurrVal('AgentNoSeq'), 2, 3, ARRAY[200000, 190000]);

INSERT INTO Industrial
(Address, SqFt, AgentNo, Zoning, AccessDesc, RailAvailable, Parking)
VALUES(ROW('123 Any Road', 'Parker', 'CO', '80238'),
 3000, CurrVal('AgentNoSeq'), 'A2', 'Strip mall', TRUE,
 'Small lot');

Example 19.B.7 – UPDATE statement to change the AgentNo in the last Residential row. for agents and properties. This example extends

example 19.12.

UPDATE Residential
 SET AgentNo = CurrVal('AgentNoSeq') - 1
 WHERE PropNo = CurrVal('PropNoSeq') - 1;

Example 19.B.8 – Retrieve rows for all tables in the table hierarchy. The parent Property table contains 4 rows. Each child table (residential

and industrial) contain 2 rows.

SELECT * FROM Property;
SELECT * FROM Residential;
SELECT * FROM Industrial;

Example 19.B.8 retrieves rows to demonstrate row propagation in subtable families.
The INSERT statements in Examples 19.B.5 and 19.B.6 use the child tables (Residen-
tial and Industrial) as target tables. Row propagation also inserts rows into the par-
ent table. The SELECT statement for Residential also demonstrates the result of the
UPDATE statement in Example 19.B.7.

Example 19.B.9 demonstrates path expressions to reference components of composite
types. Note that parentheses must surround composite type references including any
table aliases such as (P.Address).City. Because PostgreSQL does not support REF
columns and path expressions to combine tables, a traditional join condition must be
used. Path expressions only apply to columns with composite types, not references
among tables.

Mannino_8e_Book.indb 45 4/21/2022 6:16:50 PM

Appendix

Example 19.B.10 demonstrates the ONLY keyword to retrieve from selected tables in a
subtable family. The SELECT statement retrieves the two rows in the Residential table
but not the additional two rows in the parent Property table.

Example 19.B.9 – Retrieve components of columns with composite data types. This example extends example 19.13.

SELECT PropNo, (P.Address).City AS PropertyCity,
 (A.Address).City AS AgentCity
 FROM Property P, Agent A
 WHERE A.AName = 'John Smith'
 AND P.AgentNo = A.AgentNo;

Example 19.B.10 – Use the ONLY keyword to retrieve from a subtable. This example corresponds to example 19.14.

SELECT PropNo, Address, Location, AgentNo
 FROM ONLY (Residential)
 WHERE Sqft > 1500;

These examples demonstrate that subtable families are the most important object feature of PostgreSQL for most
organizations. Implementing a base user-defined type involves a major software development effort and data
type expertise. Most organizations do not possess this level of expertise. Subtable families allow direct conver-
sion of generalization hierarchies in an ERD rather than indirect conversion required without table hierarchies.
However, performance of subtable families is uncertain so testing should be used in large databases to check for
performance degradation. Composite types and typed tables seem burdensome without type inheritance, so the
author advises against using composite types in most cases.

Mannino_8e_Book.indb 46 4/21/2022 6:16:50 PM

	3.A
	3.B
	3.C
	4.A
	4.B
	7.A
	9.A
	10.A
	11.A
	11.B
	13.A
	13.B
	14.A
	14.B
	16.A
	17.A
	19.A
	19.B

